/* ここはコメント行です。新しい論文は上から追記していくようにお願いします。*/ /* テーマ毎のページに追加したい場合は、"LABEL:MF" 等のようなラベルをコメントとして行内に挿入してください。 */ /* テーマの管理に利用しているラベルは、https://nicam.ne.jp/dokuwiki/doku.php?id=public:publications:theme_template を編集することで変更可能です。*/ ====== NICAM publication list by year ====== See also [[https://nicam.sakura.ne.jp/theme_auto.php|publication list by theme]]. ===== 2024 ===== * [[https://doi.org/10.1029/2023MS004046|Goto, D., Nishizawa, T., Uchida, J., Yumimoto, K., Jin, Y., Higurashi, A., et al., 2024]] Development of an aerosol assimilation system using a global non‐hydrostatic model, a 2‐dimensional variational method, and multiple satellite‐based aerosol products. Journal of Advances in Modeling Earth Systems, 16, e2023MS004046. https://doi.org/10.1029/2023MS004046 * [[https://doi.org/10.1029/2023MS003701|Takasuka, D., Kodama, C., Suematsu, T., Ohno, T., Yamada, Y., Seiki, T., et al., 2024]] How can we improve the seamless representation of climatological statistics and weather toward reliable global K-scale climate simulations? Journal of Advances in Modeling Earth Systems, 16, e2023MS003701. https://doi.org/10.1029/2023MS003701 * [[http://doi.org/10.2151/sola.2024-009|Kasami, K., Satoh, M., 2024]] Mechanism of secondary eyewall formation in tropical cyclones revealed by sensitivity experiments on the mesoscale descending inflow. SOLA, 20, doi:10.2151/sola.2024-009, accepted (2024/01/30). ===== 2023 ===== * [[https://doi.org/10.1016/j.ocemod.2022.102153|Tatsuo Suzuki, Masuo Nakano, Shingo Watanabe, Hiroaki Tatebe, Yuki Takano, 2023]]: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption. Ocean Modelling, 181, 102153. https://doi.org/10.1016/j.ocemod.2022.102153 (Received 22 August 2022, Revised 17 October 2022, Accepted 24 November 2022, Available online 2 December 2022). * [[https://doi.org/10.5194/egusphere-2023-1997|Roh, W., Satoh, M., Hagihara, Y., Horie, H., Ohno, Y. and Kubuta, T., 2023]]: An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite. Atmos. Meas. Tech. Discussion, submitted. https://doi.org/10.5194/egusphere-2023-1997 * [[https://doi.org/10.1186/s40645-023-00583-x|Noda, A. T., Ohno, T., Kodama, C., Chen, Y.-W., Kuba, N., Seiki, T., Yamada, Y., and Satoh, M., 2023]]: Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warming. Prog. Earth Planet. Sci., 10, 48, https://doi.org/10.1186/s40645-023-00583-x (Published: 18 August 2023) * [[https://doi.org/10.1029/2023GL104210|Wu, X., Fu, Q., & Kodama, C., 2023]]: Response of Tropical Overshooting Deep Convection to Global Warming Based on Global Cloud-Resolving Model Simulations. Geophysical Research Letters, 50(14), e2023GL104210. https://doi.org/10.1029/2023GL104210 * [[https://doi.org/10.5194/amt-16-3331-2023|Roh, W., Satoh, M., Hashino, T., Matsugishi, S., Nasuno, T., Kubota, T., 2023]]: Introduction to EarthCARE synthetic data using a global storm-resolving simulation. Atmos. Meas. Tech., https://doi.org/10.5194/amt-16-3331-2023 (accepted 2023/05/23; online published 2023/06/30). * [[https://doi.org/10.5194/amt-16-3211-2023|Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M. and Kubota, T., 2023]]: Global evaluation of Doppler velocity errors of EarthCARE Cloud Profiling Radar using global storm-resolving simulation. Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-16-3211-2023 (accepted 2023/05/23; online published 2023/06/28). * [[https://doi.org/10.1007/s00382-022-06657-8|Rehbein, A., Ambrizzi, T., 2023]]: Mesoscale convective systems over the Amazon basin in a changing climate under global warming. Clim. Dyn. https://doi.org/10.1007/s00382-022-06657-8 * [[https://doi.org/10.1029/2022GL102603|Feng, Z., Leung, L. R., Hardin, J.,Terai, C. R., Song, F., and Caldwell, P., 2023]]: Mesoscale convective systems in DYAMOND global convection-permitting simulations. Geophys. Res. Lett., 50, e2022GL102603. https://doi.org/10.1029/2022GL102603 * [[https://doi.org/10.1029/2022JD037447|Kotsuki, S., Terasaki, K., Satoh, M., Miyoshi, T., 2023]]: Ensemble-based Data Assimilation of GPM DPR Reflectivity: Cloud Microphysics Parameter Estimation with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). J. Geophys. Res: Atmosphere, DOI:10.1029/2022JD037447, accepted (2023/02/09). * [[https://doi.org/10.51094/jxiv.46|Nakano, M., Y.-W. Chen, and M. Satoh, 2023]]: Analysis of the factors that led to an uncertainty of track forecast of Typhoon Krosa (2019) by 101-member ensemble forecast experiments using NICAM. J. Meteor. Soc. Japan, 101, doi:10.2151/jmsj.2023-013 (accepted 2023/02/14); preprint available at Jxiv, https://doi.org/10.51094/jxiv.46 * [[https://doi.org/10.1029/2022GL100565|Yamada, Y., Miyakawa, T., Nakano, M., Kodama, C., Wada, A., Nasuno, T., ChenY.-C., Yamazaki, A., Yashiro, H., Satoh, M., 2023]]: Large ensemble simulation for investigating predictability of precursor vortices of Typhoon Faxai in 2019 with a 14-km mesh global nonhydrostatic atmospheric model. Geophys. Res. Lett., 50, e2022GL100565 (accepted 2022/11/19; first published 2022/11/23), DOI:10.1029/2022GL100565. * [[https://doi.org/10.2151/jmsj.2023-010|Masunaga R., T. Miyakawa, T. Kawasaki and H. Yashiro, 2023]]: Flux Adjustment on Seasonal-Scale Sea Surface Temperature Drift in NICOCO. J. Meteor. Soc. Japan, 101. https://doi.org/10.2151/jmsj.2023-010 * [[https://doi.org/10.5194/amt-16-603-2023|Wang, M., Nakajima, T. Y., Roh, W., Satoh, M., Suzuki, K., Kubota, T., and Yoshida, M., 2023]]: Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product. Atmospheric Measurement Techniques, 16, 603–623, https://doi.org/10.5194/amt-16-603-2023 (accept 2023/01/31) * [[https://doi.org/10.1016/j.ocemod.2022.102153|Tatsuo Suzuki, Masuo Nakano, Shingo Watanabe, Hiroaki Tatebe, Yuki Takano, 2023]]: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption. Ocean Modelling, 181, 102153, https://doi.org/10.1016/j.ocemod.2022.102153. (Accepted 24 November 2022, Available online 2 December 2022) * [[https://doi.org/10.2151/sola.19A-001|Satoh, M., Hosotani, K., 2023]]: Characteristics analysis of the senjo-kousuitai conditions in the Kyushu region in early July: The case of the July 2020 heavy rainfall event. SOLA, 19A, 1-5(TBD), accepted (2022/12/13), doi:10.2151/sola.19A-001. Preprint available at Jxiv https://doi.org/10.51094/jxiv.184 ===== 2022 ===== * [[https://doi.org/10.1029/2021GL096759|Ma, H.-Y., Klein, S. A., Lee, J., Ahn, M.-S., Tao, C., Gleckler, P. J., 2022]]: Superior daily and sub-daily precipitation statistics for intense and long-lived storms in global storm-resolving models. Geophysical Research Letters, 49, e2021GL096759. https://doi.org/10.1029/2021GL096759 * [[https://doi.org/10.21203/rs.3.rs-2272193/v1|Chen, Y-W., Kanemaru, K., Kotsuki, S., Terasaki, K., Yashiro, H., Nakano, ., Kyohei, K., Satoh, M., Kubota, T., Miyoshi, T., 2022]]: NEXRA: A weather research analysis system based on the Nonhydrostatic Icosahedral Atmospheric Model with a local ensemble transform Kalman filter. Progress in Earth and Planetary Science, submitted (2022/11/15). Preprint available at researchsquare: https://doi.org/10.21203/rs.3.rs-2272193/v1 * [[https://doi.org/10.1186/s40645-022-00502-6|Niwa, Y., Ishijima, K., Ito, A., and Iida, Y., 2022]]: Toward a long-term atmospheric CO2 inversion for elucidating natural carbon fluxes: technical notes of NISMON-CO2 v2021.1. Prog Earth Planet Sci 9, 42. https://doi.org/10.1186/s40645-022-00502-6 * Kodama, T., Takasuka, D., Sherriff-Tadano, S., Kuroda, T., Miyakawa, T., Abe-Ouchi, A., Satoh, M. , 2022: Climate of high obliquity exo-terrestrial planets with a three-dimensional cloud resolving climate model. Astrophysical Journal, accepted (2022/10/08). * [[https://doi.org/10.1186/s40645-022-00511-5|Satoh, M., Matsugishi, S., Roh, W., Ikuta, Y., Kuba, N., Seiki, T., Hashino, T., Okamoto, H., 2022]] Evaluation of cloud and precipitation processes in regional and global models with ULTIMATE (ULTra-sIte for Measuring Atmosphere of Tokyo metropolitan Environment): A case study using the dual-polarization Doppler weather radars. Progress in Earth and Planetary Science, 9, 51, doi:10.1186/s40645-022-00511-5 (accepted 2022/09/27). * [[https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-22-0049.1/JAS-D-22-0049.1.xml|Seiki, T., Ohno, T, 2022]]: Improvements of the double-moment bulk cloud microphysics scheme in the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). J. Atmos. Sci., accepted. https://doi.org/10.1175/JAS-D-22-0049.1 * [[https://doi.org/10.1029/2022GL098628|Suematsu, T., Miura, H., Kodama, C., and Takasuka, D., 2022]] Deceleration of Madden-Julian Oscillation speed in NICAM AMIP-type simulation associated with biases in the Walker circulation strength. Geophysical Research Letters, 49, e2022GL098628. https://doi.org/10.1029/2022GL098628 * [[https://doi.org/10.1080/07055900.2022.2075310|Seiki, T., Roh, W., Satoh, M., 2022]]: Cloud Microphysics in Global Cloud Resolving Models. Atmosphere Ocean. https://doi.org/10.1080/07055900.2022.2075310 /*LABEL:NSW*/ * [[https://doi.org/10.2151/jmsj.2022-040|Ishiyama, T., Satoh, M., Yamada, Y., 2022]]: Possible roles of the sea surface temperature warming of the Pacific Meridional Mode and the Indian Ocean warming on tropical cyclone genesis over the North Pacific for the super El Nino in 2015. J. Meteor. Soc. Japan, 100, https://doi.org/10.2151/jmsj.2022-040 (accepted 2022/05/26). * [[https://doi.org/10.1029/2021MS002636|Matsugishi, S., Satoh, M., 2022]]: Sensitivity of Horizontal Scale of Convective Self-aggregation to Sea Surface Temperature: Radiative Convective Equilibrium Experiments with a Global Nonhydrostatic Model. J. Adv. Model Earth Syst., 14, e2021MS002636, https://doi.org/10.1029/2021MS002636 (accepted 2022/04/17; First published: 2022/04/26). * [[https://doi.org/10.1029/2021JD035916|Na, Y., Fu, Q., Leung, L. R., Kodama, C., & Lu, R., 2022]]: Mesoscale convective systems simulated by a high-resolution global nonhydrostatic model over the United States and China. Journal of Geophysical Research: Atmospheres, 127, e2021JD035916. https://doi.org/10.1029/2021JD035916 * [[https://doi.org/10.2151/sola.2022-015|Nasuno, T., M. Nakano, H. Murakami, K. Kikuchi, Y. Yamada, 2022]]: Impacts of midlatitude western North Pacific sea surface temperature anomaly on the subseasonal to seasonal tropical cyclone activity: case study of boreal summer 2018, SOLA, 18, 88-95.(accepted 2022.03.13)doi: 10.2151/sola.2022-015. * Chen, Y.-W., Satoh, M., Kodama, C., Noda, A. T., Yamada, T., 2022: Projection of high clouds and its link to ice hydrometeors: An approach by using long-term global cloud-system resolving simulations. J. Climate, accepted (2022/02/04). * [[https://doi.org/10.2151/jmsj.2022-010|Goto, D., and J. Uchida, 2022]]: Uncertainty in aerosol rainout processes through the case of the radioactive materials emitted by the Fukushima Dai-ichi Nuclear Power Plant in March 2011. J. Meteor. Soc. Japan, 100, https://doi.org/10.2151/jmsj.2022-010. * [[https://doi.org/10.1007/s00382-021-06056-5|Chikira, M., Yamada, Y., Abe-Ouchi, A., Satoh, M., 2022]]: Response of convective systems to the orbital forcing of the last interglacial in a global nonhydrostatic atmospheric model with and without a convective parameterization. Clim. Dyn., https://doi.org/10.1007/s00382-021-06056-5 (accepted 2021/11/13;, published 2022/01/01). ===== 2021 ===== * [[https://doi.org/10.2151/jmsj.2021-062|Heim, C., L. Hentgen, N. Ban, and C. Schär, 2021]]: Inter-model variability in convection-resolving simulations of subtropical marine low clouds. J. Meteor. Soc. Japan, 99, 1271-1295. https://doi.org/10.2151/jmsj.2021-062 * [[https://doi.org/10.1029/2021GL095746|Christensen, H. M., Driver, O. G. A., 2021]]: The fractal nature of clouds in global storm-resolving models. Geophysical Research Letters, 48, e2021GL095746. https://doi.org/10.1029/2021GL095746 * [[https://doi.org/10.1186/s40645-021-00459-y|Matsuoka, D.,2021]]: Classification of imbalanced cloud image data using deep neural networks: performance improvement through a data science competition. Prog. Earth. Planet. Sci., 8, 68. https://doi.org/10.1186/s40645-021-00459-y * [[https://doi.org/10.1029/2021EO210607|Learn, J., 2021]]: Cyclone "seed" survival affects hurricane season intensity, Eos, 102, https://doi.org/10.1029/2021EO210607. Published on 15 November 2021. * [[https://doi.org/10.1016/B978-0-12-822973-6.00020-2|Miyoshi, T., Terasaki, K., Kotsuki, S., Otsuka, S., Chen, Y., Kanemaru, K., Okamoto, K., Kondo, K., Lien, G., Yashiro, H., Tomita, H., Satoh M., and Kalnay, E., 2021]] Enhancing data assimilation of GPM observations. Chapter 25, Precipitation Science - Measurement, Remote Sensing, Microphysics, and Modeling, Edited by Michaelides, S. Elsevier, 787-804. https://doi.org/10.1016/B978-0-12-822973-6.00020-2 (published 2021/11/11). * [[https://doi.org/10.1002/essoar.10507887.1|Turbeville, S. M., Nugent, J. M., Ackerman, T. P., Bretherton, C. S., and Blossey, P. N., 2021]]: Tropical Cirrus in Global Storm-Resolving Models. Part II: Cirrus Life Cycle and Top-of-Atmosphere Radiative Fluxes. Earth Sp. Sci. Open Arch., 25. doi:10.1002/essoar.10507887.1. (Published Online: 2 Sep 2021) * [[https://doi.org/10.1002/essoar.10507904.1|Nugent, J. M., Turbeville, S. M., Bretherton, C. S., Blossey, P. N., and Ackerman, T. P., 2021]]: Tropical Cirrus in Global Storm-Resolving Models. Part I: Role of Deep Convection. Earth Sp. Sci. Open Arch., 29. doi:10.1002/essoar.10507904.1. (Published Online: 14 Sep 2021) * [[https://doi.org/10.1029/2021JD035223|Noda, A. T., Seiki, T., Roh, W., Satoh, M. and Ohno, T., 2021]]: Improved representation of low-level mixed-phase clouds in a global cloud-system-resolving simulation. J. Geophys. Res.: Atmosphere, 126, e2021JD035223, https://doi.org/10.1029/2021JD035223 (first published 2021/08/17; accepted 2021/08/11). /*LABEL:NSW*/ * [[https://doi.org/10.11440/rssj|佐藤正樹, 2021]]: ULTIMATE:関東圏ウルトラサイト観測の包括的利用による高解像度数値モデルの連携研究推進. 日本リモートセンシング学会誌, Vol. 41, No. 2, pp. 133-139. https://doi.org/10.11440/rssj.41.133 * [[https://doi.org/10.11440/rssj|Satoh, M., 2021]]: ULTIMATE: ULTra-sIte for Measuring Atmosphere of Tokyo Metropolitan Environment. Journal of The Remote Sensing Society of Japan Vol. 41 No. 2, pp. 133-139. https://doi.org/10.11440/rssj.41.133 (in Japanese) * [[https://doi.org/10.2151/jmsj.2021-070|Roh, W., Satoh, M., Hohenegger, C., 2021]]: Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean. J. Meteorol. Soc. Japan, doi:10.2151/jmsj.2021-070. (accepted 2021/07/28). /*LABEL:NSW*/ * [[https://doi.org/10.1029/2021GL093646|Ohno, T., Noda, A. T., Seiki, T., and Satoh, M., 2021]]: Importance of pressure changes in high-cloud feedback due to global warming. Geophys. Res. Lett., 48, e2021GL093646, https://doi.org/10.1029/2021GL093646 (accepted 2021/07/09; published 2021/0921). * Satoh, M., 2021: ULTIMATE: ULTra-sIte for Measuring Atmosphere of Tokyo Metropolitan Environment. Journal of The Remote Sensing Society of Japan Vol. 41 No. 2, pp. 133-139. (in Japanese) * 佐藤正樹, 2021: ULTIMATE:関東圏ウルトラサイト観測の包括的利用による高解像度数値モデルの連携研究推進. 日本リモートセンシング学会誌, Vol. 41, No. 2, pp. 133-139 * [[https://doi.org/10.2151/jmsj.2021-066|Inoue, T., Rajendran, K., Satoh, M., Miura, H., 2021]]: On the semidiurnal variation in surface rainfall rate over the tropics in a global cloud-resolving model simulation and satellite observations. J. Meteor. Soc. Japan, 99, https://doi.org/10.2151/jmsj.2021-066 (accepted 2021/06/16). * [[https://doi.org/10.34474/data.jmsj.16616554|Inoue, T., Rajendran, K., Satoh, M., Miura, H., 2021]]: Dataset for "On the semidiurnal variation in surface rainfall rate over the tropics in a global cloud-resolving model simulation and satellite observations." Meteorological Society of Japan. Dataset. https://doi.org/10.34474/data.jmsj.16616554 (published 2021/09/20). * [[https://doi.org/10.5194/acp-21-9455-2021|Niwa, Y., Sawa, Y., Nara, H., Machida, T., Matsueda, H., Umezawa, T., Ito, A., Nakaoka, S.-I., Tanimoto, H., Tohjima, Y., 2011]]: Estimation of fire-induced carbon emissions from Equatorial Asia in 2015 using in situ aircraft and ship observations. Atmospheric Chemistry and Physics, 21, 9455-9473, https://doi.org/10.5194/acp-21-9455-2021 (Accepted: 20 May 2021; Published: 23 Jun 2021). * [[https://doi.org/10.2151/jmsj.2021-046|Shibuya, R., Nakano, M., Kodama, C., Nasuno, T., Kikuchi, K., Satoh, M., Miura, H., Miyakawa, T., 2021]]: Prediction skill of the Boreal Summer Intra-Seasonal Oscillation in global non-hydrostatic atmospheric model simulations with explicit cloud microphysics. J. Meteorol. Soc. Japan., 99 (accepted 2021/03/26). * [[https://doi.org/10.2115/fiber.77.P-54|Satoh, M., Kawabata, T., Miyakawa, T., Yashiro, H., Miyoashi, T., 2021]]: Large Ensemble Atmospheric and Environmental Prediction for Disaster Prevention and Mitigation with the Supercomputer Fugaku. Journal of the Society of Fiber Science and Technology, 77, 54-58 (in Japanese). * [[https://doi.org/10.2115/fiber.77.P-54|佐藤正樹, 川畑拓矢, 宮川知己, 八代尚, 三好建正, 2021]]: 「富岳」による新時代の大アンサンブル気象・大気環境予測. 繊維学会誌, 77(2), 54-58. https://doi.org/10.2115/fiber.77.P-54 * [[https://doi.org/10.1109/TGRS.2021.3060828|Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., Kubota, T., Oki, R., 2021]]: Assessments of Doppler velocity error of EarthCARE Cloud Profiling Radar using global cloud system resolving simulation: Effects of Doppler broadening and folding. The IEEE Transactions on Geoscience and Remote Sensing, https://doi.org/10.1109/TGRS.2021.3060828 (Accepted: 17 Feb. 2021). * [[https://doi.org/10.1029/2020JD033630|Na, Y., Lu, R., Fu, Q., and Kodama, C., 2021]]: Precipitation characteristics and future changes over the southern slope of Tibetan Plateau simulated by a high‐resolution global nonhydrostatic model. Journal of Geophysical Research: Atmospheres, 126, e2020JD033630. https://doi.org/10.1029/2020JD033630 * [[https://doi.org/10.2151/sola.2021-003|Nasuno, T, 2021]]: Impacts of cloud microphysics modifications on diurnal convection and the ISO over the Maritime Continent: A case study of YMC-Sumatra 2017. SOLA, https://doi.org/10.2151/sola.2021-003 (accepted 2020/12/23). * [[https://doi.org/10.5194/gmd-14-795-2021|Kodama, C., Ohno, T., Seiki, T., Yashiro, H., Noda, A. T., Nakano, M., Yamada, Y., Roh, W., Satoh, M., Nitta, T., Goto, D., Miura, H., Nasuno, T., Miyakawa, T., Chen, Y.-W., and Sugi, M., 2021]]: The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geosci. Model Dev., 14, 795-820 https://doi.org/10.5194/gmd-14-795-2021 (Accepted: 28 Nov 2020; Published: 04 Feb 2021). (Discussion started: 01 Apr 2020; https://doi.org/10.5194/gmd-2019-369) * [[https://doi.org/10.1016/j.scitotenv.2020.143003|Cheng, Y., Dai, T., Zhang, H., Xin, J., Chen, S., Shi, G., et al., 2021]]: Comparison and evaluation of the simulated annual aerosol characteristics over China with two global aerosol models. Sci. Total Environ. 763, 143003. https://doi.org/10.1016/j.scitotenv.2020.143003 (Accepted 6 October 2020, Available online 20 October 2020). * [[https://doi.org/10.1186/s40645-020-00397-1|Yamada, Y., Kodama, C., Satoh, M., Sugi, M., Roberts, M. J., Mizuta, R., Noda, A. T., Nasuno, T., Nakano, M., Vidale, P. L., 2021]]: Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Progress in Earth and Planetary Science, 8, 11, https://doi.org/10.1186/s40645-020-00397-1 (accepted 2020/12/03; published 2021/01/22). * [[https://doi.org/10.1175/JCLI-D-20-0688.1|Takasuka, D., Satoh, M., 2021]]: Diversity of the Madden Julian Oscillation: Initiation Region Modulated by the Interaction Between the Intraseasonal and Interannual Variabilities. J. Clim., https://doi.org/10.1175/JCLI-D-20-0688.1 (accepted 2021/01/22; Published-online 2021/02/01). * [[https://doi.org/10.2151/jmsj.2021-029|Judt, F,, Klocke, D., Rios-Berrios, R., Vanniere, B., Ziemen, B., Auger, L., Biercamp, J., Bretherton, C., Chen, X., Dueben, P., Hohenegger, C., Khairoutdinov, M., Kodama, C., Kornblueh, C., Lin, S.-J., Nakano, M., Neumann, P., Putman, W., Roeber, W., Roberts, M., Satoh, M., Shibuya, R., Stevens, B., Vidale, P. L., Wedi, N., Zhou, L., 2021]]: Tropical cyclones in global storm-resolving models. J. Meteor. Soc. Japan, 99, 579-602. https://doi.org/10.2151/jmsj.2021-029 (accept 2020/12/28). ===== 2020 ===== * [[https://doi.org/10.1029/2019JD031926|Na, Y., Fu, Q., and Kodama, C., 2020]]. Precipitation probability and its future changes from a global cloud‐resolving model and CMIP6 simulations. J. Geophy. Res.: Atmos., 125, e2019JD031926. https://doi.org/10.1029/2019JD031926 (First published: 18 February 2020). * [[https://doi.org/10.5194/essd-12-3269-2020|Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., et al., 2020]] Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269-3340. doi:10.5194/essd-12-3269-2020. * Press release: http://www.nies.go.jp/whatsnew/20201211/20201211.html * [[https://journals.ametsoc.org/view/journals/clim/33/12/jcli-d-19-0772.1.xml|Hotta, H., Suzuki, K., Goto, D., Lebsock, M., 2020]] Climate Impact of Cloud Water Inhomogeneity through Microphysical Processes in a Global Climate Model, Journal of Climate, 33, 5195-5212. https://doi.org/10.1175/JCLI-D-19-0772.1. https://journals.ametsoc.org/view/journals/clim/33/12/jcli-d-19-0772.1.xml (Published-online: 01 May 2020; Print Publication: 15 Jun 2020) * [[https://doi.org/10.2151/jmsj.2021-014|Yamashita, Y., M. Takigawa, D. Goto, H. Yashiro, M. Satoh, Y. Kanaya, F. Taketani, and T. Miyakawa, 2021]]: Effect of model resolution on black Carbon transport from Siberia to the Arctic associated with the well-developed low-pressure systems in September. J. Meteor. Soc. Japan, 99. https://doi.org/10.2151/jmsj.2021-014 (accepted: 2020/11/05) * Supporting data: [[https://doi.org/10.34474/data.jmsj.13384538|Yamashita, Y., M. Takigawa, D. Goto, H. Yashiro, M. Satoh, Y. Kanaya, F. Taketani, and T. Miyakawa, 2020]]:: The model outputs of the Nonhydrostatic Icosahedral Atmospheric Model; Spectral Radiation Transport Model for Aerosol Species (NICAM-SPRINTARS). Meteorological Society of Japan. Dataset. https://doi.org/10.34474/data.jmsj.13384538 * [[https://doi.org/10.1186/s40645-020-00383-7|Nitta, T., Arakawa, T., Hatono, M., Takeshima, A., and Yoshimura, K., 2020]]: Development of Integrated Land Simulator. Prog. Earth Planet Sci., 7, 68. https://doi.org/10.1186/s40645-020-00383-7 (Published: 11 November 2020) * [[https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00005|Hisashi Yashiro, Koji Terasaki, Yuta Kawai, Shuhei Kudo, Takemasa Miyoshi, Toshiyuki Imamura, Kazuo Minami, Hikaru Inoue, Tatsuo Nishiki, Takayuki Saji, Masaki Satoh, Hirofumi Tomita, 2020]]: A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations. 2020 SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, 2020 pp. 1-10. https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00005 (on line published: 2020/11/03). * [[https://doi.org/10.1038/s41598-020-75763-6|Tohjima, Y., Patra, P.K., Niwa, Y., Mukai, H., Sasakawa, M., Machida, T., 2020]]: Detection of fossil-fuel CO2 plummet in China due to COVID-19 by observation at Hateruma. Sci. Rep. 10, 18688. https://doi.org/10.1038/s41598-020-75763-6 (Published: 29 October 2020). * [[https://doi.org/10.1175/JAS-D-20-0050.1|Takasuka, D., M. Satoh, 2020]]: Dynamical Roles of Mixed Rossby-Gravity Waves in Driving Convective Initiation and Propagation of the Madden-Julian Oscillation: General Views. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-20-0050.1 (accepted: 2020/09/17; online published 2020/10/01). * [[http://hdl.handle.net/21.14101/d4beee8e-6996-453e-bbd1-ff53b6874c0e|Wing, A.A., C.L. Stauffer, T. Becker, K.A. Reed, M.-S. Ahn, N.P. Arnold, S. Bony, M. Branson, G.H. Bryan, J.-P. Chaboureau, S.R. de Roode, K. Gayatri, C. Hohenegger, I.-K. Hu, F. Jansson, T.R. Jones, M. Khairoutdionv, D. Kim, Z.K. Martin, S. Matsugishi, B. Medeiros, H. Miura, Y. Moon, S.K. Mueller, T. Ohno, M. Popp, T. Prabhakaran, D. Randall, R. Rios-Berrios, N. Rochetin, R. Roehrig, D.M. Romps, J.H. Ruppert, Jr., M. Satoh, L.G. Silvers, M.S. Singh, B. Stevens, L. Tomassini, C.C. van Heerwaarden, S. Wang, and M. Zhao, 2020]]: Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) Simulation Dataset. The German Climate Computing Center (DKRZ), Dataset. hdl:21.14101/d4beee8e-6996-453e-bbd1-ff53b6874c0e (published 2020/09/01). * [[https://doi.org/10.1175/JTECH-D-20-0041.1|Kubota, T., S. Seto, M. Satoh, T. Nasuno, T. Iguchi, T. Masaki, J. M. Kwiatkowski, R. Oki, 2020]]: Cloud assumption of Precipitation Retrieval Algorithms for the Dual-frequency Precipitation Radar. J. Atmos. Ocean. Tech., 37, 2015-2031. https://doi.org/10.1175/JTECH-D-20-0041.1 (accepted: 2020/09/03; on line published: 2020/09/15). * [[https://doi.org/10.5194/gmd-13-3731-2020|Goto, D., Sato, Y., Yashiro, H., Suzuki, K., Oikawa, E., Kudo, R., Nagao, T. M., Nakajima, T.]], 2020: Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model. Geoscientific Model Development. 13, 3731-3768. https://doi.org/10.5194/gmd-13-3731-2020 (published on 25 Aug 2020) * [[https://doi.org/10.34474/data.jmsj.12807935.v1|Kodama C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T., Tomita, T., Yamaura, T., Takahashi, H. G., Hara, H., Kawatani, Y., Satoh M., Sugi, M., 2020]]: Sample data of NICAM AMIP-type present-day climate simulation. Meteorological Society of Japan, J-STAGE DATA. https://doi.org/10.34474/data.jmsj.12807935.v1 (dataset posted on 19.08.2020) * [[https://jstagedata.jst.go.jp/articles/dataset/Sample_data_of_NICAM_AMIP-type_present-day_climate_simulation/12807935|Satoh, M., Yamada, Y., Sugi, M., Kodama, C., Noda, A. T., 2020]]: Tropical cyclone position and intensity in NICAM AMIP-type simulation. Meteorological Society of Japan, J-STAGE DATA. https://doi.org/10.34474/data.jmsj.12599630 (dataset posted on 02.07.2020) * [[https://doi.org/10.1175/JAS-D-19-0266.1|Seiki, T., Roh, W., 2020]]: Improvements in super-cooled liquid water simulations of low-level mixed-phase clouds over the Southern Ocean using a single-column model. J. Atmos. Sci., 77, 3803-3819, https://doi.org/10.1175/JAS-D-19-0266.1 (accepted: 2020/08/19; EOR published: 2020/08/25; on line published: 2020/10/21). /*LABEL:NSW*/ /*LABEL:NDW*/ * [[https://doi.org/10.5194/acp-19-13445-2019|Cheng, Y., Dai, T., Goto, D., Schutgens, N. A. J., Shi, G., Nakajima, T., 2020:]] Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter. Atmospheric Chemistry and Physics, 19, 13445-13467. https://doi.org/10.5194/acp-19-13445-2019 * [[https://doi.org/10.1016/j.atmosenv.2020.117583|Liu, Yuzhi, Zhu, Qingzhe, Hua, Shan, Alam, Khan, Dai, Tie, Cheng, Yueming, 2020:]] Tibetan Plateau driven impact of Taklimakan dust on northern rainfall. Atmospheric Environment, 234, 117583. https://doi.org/10.1016/j.atmosenv.2020.117583 * [[https://doi.org/10.1029/2020MS002138|Roh, W., Satoh, M., Hashino, T., Okamoto, H., Seiki, T., 2020]]: Evaluations of the thermodynamic phases of clouds in a cloud system-resolving model using CALIPSO and a satellite simulator over the Southern Ocean. J. Atmos. Sci., 77, 3781-3801, https://doi.org/10.1029/2020MS002138 (accepted 2020/07/27; EOR published 2020/08/06; online published 2020/10/21). /*LABEL:NSW*/ /*LABEL:NDW*/ * [[https://doi.org/10.1029/2019MS001891|Kuba, N.,T. Seiki, K. Suzuki, W. Roh, and M. Satoh, (2020)]]: Evaluation of rain microphysics using a radar simulator and numerical models: Comparison of two‐moment bulk and spectral bin cloud microphysics schemes. Journal of Advances in Modeling Earth Systems, 12, e2019MS001891. /*LABEL:NDW*/ * [[https://doi.org/10.1029/2020MS002138|Allison Wing, Catherine Stauffer, Tobias Becker, Kevin Reed, Min-Seop Ahn, Nathan Arnold, Sandrine Bony, Mark Branson, George Bryan, Jean-Pierre Chaboureau, Stephan De Roode, Kulkarni Gayatri, Cathy Hohenegger, I-Kuan Hu, Fredrik Jansson, Todd Jones, Marat Khairoutdinov, Daehyun Kim, Zane Martin, Shuhei Matsugishi, Brian Medeiros, Hiroaki Miura, Yumin Moon, Sebastian Mueller, Tomoki Ohno, Max Popp, Thara Prabhakaran, David Randall, Rosimar Rios-Berrios, Nicolas Rochetin, Romain Roehrig, David Romps, James H Ruppert Jr, Masaki Satoh, Levi Silvers, Martin Singh, Bjorn Stevens, Lorenzo Tomassini, Chiel van Heerwaarden, Shuguang Wang, Ming Zhao, 2020:]] Clouds and Convective Self-Aggregation in a Multi-Model Ensemble of Radiative-Convective Equilibrium Simulations. J. Adv. Model Earth Syst., https://doi.org/10.1029/2020MS002138 (accepteditted 2020/07/11; online published 2020/07/20). * [[https://doi.org/10.2151/jmsj.2020-054|Ohno, T., Noda. A.T., Satoh, M., 2020]]: Importance of sub-grid ice cloud physics in a turbulence scheme to high clouds and their response to global warming. J. Meteorol. Soc. Japan, 98, 1069-1081, doi:10.2151/jmsj.2020-054 (accepted 2020/06/25; online published 2020/07/20). * [[https://doi.org/10.1029/2020GL088662|Roberts, Malcolm John, Camp, Joanne, Seddon, Jon, Vidale, Pier Luigi, Hodges, Kevin, Vanniere, Benoit, Mecking, Jenny, Haarsma, Rein, Bellucci, Alessio, Scoccimarro, Enrico, Caron, Louis-Philippe, Chauvin, Fabrice, Terray, Laurent, Valcke, Sophie, Moine, Marie-Pierre, Putrasahan, Dian, Roberts, Christopher D., Senan, Retish, Zarzycki, Colin, Ullrich, Paul, Yamada, Yohei, Mizuta, Ryo, Kodama, Chihiro, Fu, Dan, Zhang, Qiuying, Danabasoglu, Gokhan, Rosenbloom, Nan, Wang, Hong, Wu, Lixin, 2020]] Projected Future Changes in Tropical Cyclones using the CMIP6 HighResMIP Multi-model Ensemble. Geophysical Research Letters. e2020GL088662. https://doi.org/10.1029/2020GL088662 (First published: 20 June 2020). * [[https://doi.org/10.1175/JCLI-D-19-0824.1|Takahashi, H. G., N. Kamizawa, T. Nasuno, Y. Yamada, C. Kodama, S. Sugimoto, and M. Satoh, 2020]]: Response of the Asian Summer Monsoon Precipitation to GlobalWarming in a High-Resolution Global Nonhydrostatic Model. Journal of Climate, https://doi.org/10.1175/JCLI-D-19-0824.1 (accepted 2020/06/23; online published 2020/07/21). * [[https://doi.org/10.5194/essd-2019-128|Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Hoeglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Mueller, J., Murgia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q, 2020]]: The Global Methane Budget 2000-2017, Earth Syst. Sci. Data, (Accepted 2020/05). https://doi.org/10.5194/essd-2019-128 * [[https://doi.org/10.1002/qj.3838|Niwa, Y. and Fujii, Y., 2020]] A conjugate BFGS method for accurate estimation of a posterior error covariance matrix in a linear inverse problem. Q. J. R. Meteorol. Soc. (Accepted and online published Author Manuscript 2020/05/27). https://doi.org/10.1002/qj.3838 * [[https://doi.org/10.2151/jmsj.2020-046|Nakamura, Y., T. Miyakawa, and M. Satoh, 2020]]: The role of Typhoon Kilo (T1517) in the Kanto-Tohoku heavy rainfall event in Japan in September 2015. J. Meteor. Soc. Japan., https://doi.org/10.2151/jmsj.2020-046 (accepted 2020/05/13; EOR 2020/06/02). * *[[https://doi.org/10.34474/data.jmsj.13012892.v1|Nakamura, Y., T. Miyakawa, and M. Satoh, 2020]]: Numerical simulations for Kanto-Tohoku heavy rainfall Event in Japan in September 2015.Meteorological Society of Japan. Dataset. https://doi.org/10.34474/data.jmsj.13012892.v1 (posted on 9 Oct. 2020). Origical Manuscript: https://doi.org/10.2151/jmsj.2020-046 * [[https://doi.org/10.2151/sola.16A-003|Matsugishi, S., Miura, H., Nasuno, T., and Satoh, M., 2020]]: Impact of latent heat flux modifications on the reproduction of a Madden-Julian oscillation event during the 2015 Pre-YMC campaign using a global cloud-system-resolving model. SOLA, https://doi.org/10.2151/sola.16A-003 (accepted 2020/05/04; EOR 2020/05/21). * [[https://doi.org/10.1007/978-3-030-35798-6_25|Miyoshi, T., Kotsuki, S., Terasaki, K., Otsuka, S., Lien, G-Y., Yashiro, H., Tomita, H., Satoh, M., Kalnay, E., 2020]]: Precipitation Ensemble Data Assimilation in NWP Models. Satellite Precipitation Measurement: Volume 2. Eds., Levizzani, Vincenzo, Kidd, Christopher, Kirschbaum, Dalia B., Kummerow, Christian D., Nakamura, Kenji, Turk, F. Joseph. Cham, Springer International Publishing, 983-991, ISBN978-3-030-35798-6. https://doi.org/10.1007/978-3-030-35798-6_25 (online published 2020/04/15). * [[https://doi.org/10.1175/WAF-D-19-0210.1|Fonseca, R., Temimi, M., Thota, M. S., Nelli, N. R., Weston, M. J., Suzuki, K., Uchida, J., Kumar, K. N., Branch, O., Wehbe, Y., Al Hosari, T., Al Shamsi, N., and Shalaby, A., 2020]]: On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting, 35, 891-919. https://doi.org/10.1175/WAF-D-19-0210.1 (Published-online: 01 Apr 2020; Print Publication: 01 Jun 2020) * [[https://doi.org/10.2151/sola.2020-012|Sugi, M., Y. Yamada, C. Kodama, K. Yoshida, R. Mizuta, and M. Satoh, 2020]]: Future changes in the global frequency of tropical cyclone seeds. SOLA, 16, 70-74, https://doi.org/10.2151/sola.2020-012 (online published 2020/03/11; final version 2020/05/01). * [[https://doi.org/10.1186/s40645-019-0320-z|Arakawa, T., Inoue, T., Yashiro, H., and Satoh, M., 2020]] Coupling Library Jcup3: Its philosophy and application. Progress in Earth and Planetary Science, 7, 6, https://doi.org/10.1186/s40645-019-0320-z (accepted 2019/12/30; published 2020/02/06). * [[https://doi.org/10.1029/2019JD031304|Kotsuki S., Sato Y., and Miyoshi T., 2020]]: Data Assimilation for Climate Research: Model Parameter Estimation of Large Scale Condensation Scheme. J. Geophys. Res., 125, e2019JD031304. doi:10.1029/2019JD031304 ===== 2019 ===== * [[https://doi.org/10.1029/2019GL084491|Sueki, K., Yamaura, T., Yashiro, H., Nishizawa, S., Yoshida, R., Kajikawa, Y., and Tomita, H., 2019]]: Convergence of convective updraft ensembles with respect to the grid spacing of atmospheric models. Geophys. Res. Lett., 46. https://doi.org/10.1029/2019GL084491 (Accepted 2019/11/21; Accepted article online 2019/12/04). * [[https://doi.org/10.1029/2019GL084001|Kodama, C., Stevens, B., Mauritsen, T., Seiki, T. and Satoh, M., 2019]] A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophys. Res. Lett., 46. https://doi.org/10.1029/2019GL084001 (accept 2019/09/18; on line published 2019/11/13). * [[https://doi.org/10.1029/2019GL084566|Qian, Y., Murakami, H., Nakano, M., Hsu, P.‐C., Delworth, T. L., Kapnick, S. B., Rammaswamy, V., Mochizuki, T., Morioka, Y., Doi, T., Kataoka, T., Nasuno, T. and Yoshida, K.]], 2019: On the mechanisms of the active 2018 tropical cyclone season in the North Pacific. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL084566 (online published: 09 October 2019). * [[https://doi.org/10.1029/2019JD030519|Seiki, T., Kodama, C., Satoh, M., Hashino, T., Hagihara, Y., Okamoto, H., 2019]]: Characteristics of ice clouds over mountain regions detected by CALIPSO and CloudSat satellite observations. J. Geophys. Res. Atmosphere, 124 (accepted 2019/09/10; on line published 2019/09/12). * [[https://doi.org/10.1029/2019MS001658|Noda, N., Kodama, C., Yamada, Y., Satoh, M., Ogura, T., Ohno, T.]], 2019 : Responses of clouds and large-scale circulation to global warming evaluated from multi-decadal simulations using a global nonhydrostatic model.J. Adv. Model. Earth Syst., 11, https://doi.org/10.1029/2019MS001658. (accepted 2019/07/30; published 2019/09/12). * [[https://doi.org/10.1186/s40645-019-0304-z|Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C., Chen, X., Duben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-L., Putman, W., Shibuya, R., Neumann, P., Rober, N., Vannier, B., Vidale, P.-L., Wedi, N., Zhou, L.. 2019]]: DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 6, 61, https://doi.org/10.1186/s40645-019-0304-z (accepted 2019/07/26; online published 2019/09/30). * Satoh, M., Yamada, Y., Sugi, M., Kodama, C., Noda, A. T., 2019: Tropical cyclone studies with the global non-hydrostatic model NICAM. Gekkan Kaiyo, 62 Extra Edition, July 2019, (in Japanese). * 佐藤正樹, 山田洋平, 杉正人, 小玉知央, 野田暁, 2019: 全球非静力学モデルNICAMによる台風研究. 月刊海洋2019年7月号・号外. * [[https://doi.org/10.1175/JAS-D-19-0040.1|Stephan, C.C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt]], 2019: Intercomparison of gravity waves in global convection-permitting models. J. Atmos. Sci., EOR. https://doi.org/10.1175/JAS-D-19-0040.1 * [[https://doi.org/10.2151/jmsj.2019-034|Miyakawa, T., and H. Miura, 2019]]: Resolution dependencies of tropical convection in a global cloud/cloud-system resolving model. J. Meteor. Soc. Japan, 97, 745-756. https://doi.org/10.2151/jmsj.2019-034 * [[https://doi.org/10.1029/2019MS001704|Ohno, T., Satoh, M., and Noda, A. T., 2019]]: Fine vertical resolution radiative-convective equilibrium experiments: Roles of turbulent mixing on the high-cloud response to sea surface temperatures. J. Adv. Model. Earth Syst., 11, 1637-1654, https://doi.org/10.1029/2019MS001704 (accepted 2019/05/10; online published 2019/05/16).. * [[https://doi.org/10.1007/s40641-019-00131-0|Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S., Putman, W.M., Duben, P., 2019:]] Global Cloud-Resolving Models. Current Climate Change Reports, 5, 172-184, doi:10.1007/s40641-019-00131-0 (accepted 2019/05/03; online published 2019/05/17). * [[https://doi.org/10.1029/2019GL082086|Yamada, Y., Kodama, C., Satoh, M., Nakano, M., Nasuno, T., Sugi, M., 2019]]: High-resolution Ensemble Simulations of Intense Tropical Cyclones and Their Internal Variability During the El Ninos of 1997 and 2015. Geophys. Res. Lett., 46, 7592-7601, https://doi.org/10.1029/2019GL082086 (accepted 2019/05/02; EOR published 2019/05/08; online published 2019/07/03).. * [[http://ris-geo.jp/wp/wp-content/uploads/2019/04/21_02_Yoshizaki.pdf|Yoshizaki, M., Takasaki, Y., Iga, S., Satoh, M., Takano, K., Komiyama, Y., Sakai E., Miyata, M., Morita, M., Moriizumi, S., 2019]]: Characteristic features of vertical profiles of temperature and lapse rate in the troposphere using data of aqua-planet NICAM results and JRA-55 analysis. Bulletin of Geo-Environmental Science, Rissho University, Vol. 21, 1-21 (in Japanese). * [[https://doi.org/10.1029/2019GL082443|Nakano, M., Kikuchi, K., 2019]]: Seasonality of Intraseasonal Variability in Global Climate Models. Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL082443 (accepted, 2019/04/10; online publised 2019/04/15). * [[https://doi.org/10.2151/sola.2019-019|Nasuno, T., 2019]]: Moisture transport over the western Maritime Continent during the 2015 and 2017 YMC Sumatra campaigns in global cloud-system-resolving simulations, SOLA, 15, 99-106. https://doi.org/10.2151/sola.2019-019 (accepted on 2019/04/09; online published 2019/05/16) * [[https://doi.org/10.1175/WAF-D-18-0164.1|Kotsuki S., Kurosawa K., Otsuka S., Terasaki K. and Miyoshi T., 2019]]: Global Precipitation Forecasts by Merging Extrapolation-based Nowcast and Numerical Weather Prediction with Locally-optimized Weights. Weather and Forecasting, https://doi.org/10.1175/WAF-D-18-0164.1 (2019/03/29). * [[https://doi.org/10.1002/qj.3534|Kotsuki, S., K. Kurosawa, and T. Miyoshi, 2019]]: On the Properties of Ensemble Forecast Sensitivity to Observations. Q. J. R. Meteorol. Soc., doi:10.1002/qj.3534.(First published: 28 March 2019) * [[https://doi.org/10.5194/acp-19-3395-2019|Shibuya, R., and Sato, K., 2019]]: A study of the dynamical characteristics of inertia--gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model. Atmos. Chem. Phys. 19, 3395-3415. doi:10.5194/acp-19-3395-2019. * [[https://doi.org/10.2151/sola.2019-009|Terasaki, K., Kotsuki, S., Miyoshi T., 2019]]: Multi-Year Analysis Using the NICAM-LETKF Data Assimilation System. SOLA, 15, 41-46. https://doi.org/10.2151/sola.2019-009 * [[https://doi.org/10.1029/2018MS001475|Dai, T., Cheng, Y., Suzuki, K., Goto, D., Kikuchi, M., Schutgens, N. A. J., Yoshida, M., Zhang, P., Husi, L., Shi, G., Nakajima, T., 2019]] Hourly aerosol assimilation of Himawari‐8 AOT using the four‐dimensional local ensemble transform Kalman filter. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2018MS001475 * [[https://doi.org/10.1007/978-981-13-3396-5_11|Miura, H., 2019]]: Difficulties in the Subgrid-Scale Redistribution of Moisture of a Global Cloud-Resolving Model.In: Randall D., Srinivasan J., Nanjundiah R., Mukhopadhyay P. (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore, 207-217. https://doi.org/10.1007/978-981-13-3396-5_11 * [[https://doi.org/10.5194/acp-19-1147-2019|McCoy, D. T., P. R. Field, G. S. Elsaesser, A. Bodas-Salcedo, B. H. Kahn, M. D. Zelinka, C. Kodama, T. Mauritsen, B. Vanniere, M. Roberts, P. L. Vidale, D. Saint-Martin, A. Voldoire, R. Haarsma, A. Hill, B. Shipway, and J. Wilkinson, 2019]] Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, Atmos. Chem. Phys., 19, 1147-1172. https://doi.org/10.5194/acp-19-1147-2019 * [[https://doi.org/10.2151/jmsj.2019-017|Jinno, T., Miyakawa, T., Satoh, M., 2019]]: NICAM predictability of the monsoon gyre over the western North Pacific during August 2016. J. Meteor. Soc. Japan, 97, 533-540, doi:10.2151/jmsj.2019-017 (accepted 2018/11/18; published 2019/04/09). * [[https://doi.org/10.2151/sola.15A-001|Kotsuki S., Terasaki K., Kanemaru K., Satoh M., Kubota T. and Miyoshi T., 2019]]: Predictability of Record-Breaking Rainfall in Japan in July 2018: Ensemble Forecast Experiments with the Near-real-time Global Atmospheric Data Assimilation System NEXRA. SOLA, https://doi.org/10.2151/sola.15A-001 (accepted 2018/11/29). ===== 2018 ===== * [[https://doi.org/10.1186/s40645-018-0245-y|Matsuoka, D., Nakano, M., Sugiyama, D., Uchida, D., 2018]]: Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci., 5, 80. https://doi.org/10.1186/s40645-018-0245-y (published 2018/12/19). * [[https://doi.org/10.1016/j.atmosres.2018.10.016|Goto, D., Kikuchi, M., Suzuki, K., Hayasaki, M., Yoshida, M., Nagao, T. M., Choi, M., Kim, J., Sugimoto, N., Shimizu, A., Oikawa, E., Nakajima,T, 2018]]: Aerosol model evaluation using two geostationary satellites over East Asia in May 2016. Atmospheric Research, https://doi.org/10.1016/j.atmosres.2018.10.016 (Available online 2 November 2018). * [[https://doi.org/10.1029/2018MS001302|Miyakawa, T., Noda, A. T., Kodama, C., 2018]]: The impact of hybrid usage of a cumulus parameterization scheme on tropical convection and large-scale circulations in a global cloud-system resolving model. J. Adv. Model. Earth Syst., (accepted 2018/11/06; First published: 2018/11/09). * [[https://doi.org/10.5194/acp-18-14851-2018|Umezawa, T., Matsueda, H., Sawa, Y., Niwa, Y., Machida, T., and Zhou, L., 2018]]: Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements, Atmos. Chem. Phys., 18, 14851-14866, https://doi.org/10.5194/acp-18-14851-2018 (Published: 17 Oct 2018). * [[https://doi.org/10.1029/2018MS001390|Muller, S.K., Manzini,E., Giorgetta,M.A., Sato,K.,and Nasuno, T., 2018]]: Convectively Generated Gravity Waves in High Resolution Models of Tropical Dynamics, J. Adv. Model. Earth Syst., first published (2018/10/05). https://doi.org/10.1029/2018MS001390 * [[http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/JAM_RandD27_04.pdf|Ikeda, M., Nasuno, T., 2018]]: Construction of near real-time forecast system using global nonhydrostatic model and actual uses at JAMSTEC intensive observations. JAMSTEC Rep. Res. Dev., 27, 47-56, https://doi.org/10.5918/jamstecr.27.47 (in Japanese). [池田 美紀子,那須野 智江, 2018: 全球非静力学モデルを用いた準実時間予測計算システムの構築とJAMSTEC集中観測における実利用. JAMSTEC Rep. Res. Dev., Volume 27, September 2018, 47-56. https://doi.org/10.5918/jamstecr.27.47] * [[https://doi.org/10.1186/s40645-018-0226-1|Satoh, M., Noda, A. T., Seiki, T., Chen, Y., Kodama, C., Yamada, Y., Kuba, N., Sato, Y., 2018]]: Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model. Progress in Earth and Planetary Science, (accepted 2018/10/08; published 2018/10/30). https://doi.org/10.1186/s40645-018-0226-1 * [[http://www.jamstec.go.jp/j/pr/publication/jamstec_rrd/img/20180816.pdf|Kodama,C., Kuwano-Yoshida, A., Watanabe,S., Doi,T., Kashimura,H.and Nasuno, T., 2018]]: JAMSTEC Model Intercomparision Project (JMIP). JAMSTEC-R(Accepted 16 Aug. 2018; online EOR 28 Aug. 2018). * [[https://doi.org/10.5194/gmd-2018-156|Zarzycki, C. M., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Ullrich, P. A., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Chen, X., Harris, L., Giorgetta, M., Reinert, D., Kuehnlein, C., Walko, R., Lee, V., Qaddouri, A., Tanguay, M., Miura, H., Ohno, T., Yoshida, R., Park, S.-H., Klemp, J., and Skamarock, W., 2018]]: DCMIP2016: The Splitting Supercell Test Case.Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-156 (in review 2018/08/03). * [[https://doi.org/10.1038/s41598-018-29931-4|Miyakawa, T., Kikuchi, K., 2018]]: CINDY2011/DYNAMO Madden-Julian oscillation successfully reproduced in global cloud/cloud-system resolving simulations despite weak tropical wavelet power. Sci. Rep., 8, 11664, https://doi.org/10.1038/s41598-018-29931-4 (accepted 2018/07/17; online published 2018/08/03). * [[https://doi.org/10.1016/j.atmosenv.2018.07.016|Dai, T., Cheng, Y., Zhang, P., Shi, G., Sekiguchi, M., Suzuki, K., Goto, D.,Nakajima, T., 2018]], Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model, Atmospheric Environment, doi:10.1016/j.atmosenv.2018.07.016 (published online 2018/07/10). * [[https://doi.org/10.5194/gmd-2018-147|Arakawa, T., Inoue, T., Yashiro, H., and Satoh, M., 2018]]: Coupling Library Jcup3: Its philosophy and application. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-147 (GMDD 2018/07/02). * [[https://doi.org/10.1029/2018MS001386|Ohno, T., Satoh, M., 2018]]: Roles of cloud microphysics on cloud responses to sea surface temperatures in radiative-convective equilibrium experiments using a high-resolution global nonhydrostatic model. J. Adv. Model. Earth Syst., https://doi.org/10.1029/2018MS001386. (accepted 2018/06/30; first published 2018/07/10). * [[https://doi.org/10.2151/sola.2018-019|Ishijima, K., Takigawa, M., Yamashita, Y., Yashiro, H., Kodama, C., Satoh, M., Tsuboi, K., Matsueda, H., Niwa, Y., Hirao, S., 2018]]: Analysis of high radon-222 concentration events using multi-horizontal-resolution NICAM simulations. SOLA, 14, 111-115, https://doi.org/10.2151/sola.2018-019 (accepted 2018/06/25). * [[https://doi.org/10.1029/2017JD028092|Kotsuki, S., Terasaki, K., Yashiro, H., Tomita, H., Satoh, M., Miyoshi, T., 2018]]: Online Model Parameter Estimation with Ensemble Data Assimilation in the Real Global Atmosphere: A Case with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the Global Satellite Mapping of Precipitation Data. Journal of Geophysical Research: Atmospheres, 123, 7375-7392, https://doi.org/10.1029/2017JD028092. (accepted 2018/06/19; on-line published 2018/06/27; final article released 2018/08/19) * [[https://doi.org/10.1175/BAMS-D-15-00320.1|Roberts, M., P. Vidale, C. Senior, H. Hewitt, C. Bates, S. Berthou, P. Chang, H. Christensen, S. Danilov, M. Demory, S. Griffies, R. Haarsma, T. Jung, G. Martin, S. Minobe, T. Ringler, M. Satoh, R. Schiemann, E. Scoccimarro, G. Stephens, and M. Wehner, 2018]] The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale.Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-15-00320.1, in press. (accepted 2018/05/11; Published Online 2018/06/14) * [[https://doi.org/10.1007/978-3-319-67474-2_14|Goto D., Nakajima, T., Tie, D., Yashiro, H., Sato, Y., Suzuki, K., Uchida, J., Misawa, S., Yonemoto, R., Trieu, T. T. N., Tomita, H., Satoh, M., 2018]] Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model. In: Vadrevu K., Ohara T., Justice C. (eds) Land-Atmospheric Research Applications in South and Southeast Asia. Springer Remote Sensing/Photogrammetry. Springer, Cham. DOI https://doi.org/10.1007/978-3-319-67474-2_14 (First Online: 27 March 2018). * [[https://doi.org/10.1002/2017MS001243|Takasuka, D., Satoh, M., Miyakawa, T., and Miura, H., 2018]] Initiation Processes of the Tropical Intraseasonal Variability Simulated in an Aqua-planet Experiment: What is the Intrinsic Mechanism for MJO Onset? J. Adv. Model. Earth Syst., 10, 1047-1073. (2018/03/27 accepted, 2018/04/20 published online) * [[https://doi.org/10.1038/s41467-018-03379-6|Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima, T., 2018:]] Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Comm., 9, 985, doi:10.1038/s41467-018-03379-6. * [[https://doi.org/10.5194/gmd-11-793-2018|Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., Ohno, T., 2018]]: Radiative-Convective Equilibrium Model Intercomparison Project. Geosci. Model Dev., 11, 793-813, https://doi.org/10.5194/gmd-11-793-2018 (accepted for review: 15 Sep 2017; discussion started: 19 Sep 2017; accepted for GMD: 24 Jan 2018; online published 2018/03/02). * [[https://doi.org/10.1002/2017MS001180|Chen, Y-W., Seiki, T., Kodama, C., Satoh, M., Noda, A. T., 2018]]: Impact of precipitating ice hydrometeors on longwave radiative effect estimated by a global cloud-system resolving model. J. Adv. Model. Earth Syst., 10, 284-296, https://doi.org/10.1002/2017MS001180 (accepted 2018/01/18). * [[http://doi.org/10.2151/jmsj.2018-002|Roh, W., Satoh, M., 2018]]: Extension of a multisensor satellite radiance-based evaluation for cloud system resolving models. J. Meteor. Soc. Japan, 96, 55-63, doi:10.2151/jmsj.2018-002 (accepted 2017/09/17). * [[https://doi.org/10.1175/MWR-D-17-0257.1|Nakano, M., Yashiro, H., Kodama, C., Tomita, H., 2018]]: Single precision in the dynamical core of a nonhydrostatic global atmospheric model: Evaluation using a baroclinic wave test case. Mon. Wea. Rev., 146, 409-416, https://doi.org/10.1175/MWR-D-17-0257.1 (accepted 2017/12/20). ===== 2017 ===== * [[https://doi.org/10.4209/aaqr.2017.01.0049|Sarkar, T., Anand, S., Singh, K. D., Tripathi, R. M., Sarojini, P., K., Goto, D., Nakajima, T., 2017]]: Simulating Long Range Transport of Radioactive Aerosols Using a Global Aerosol Transport Model. Aerosol and Air Quality Research, 17, 2631-2642, 2017. * [[https://doi.org/10.5194/gmd-2017-108|Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K., 2017]]: DCMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models, Geosci. Model Dev., 10, 477-4509, https://doi.org/10.5194/gmd-10-4477-2017 (Accepted: 18 Oct 2017; Published: 06 Dec 2017). * [[http://www.cmsjournal.net:8080/Jweb_jmr/EN/abstract/abstract1819.shtml|Jing, X., Zhang, H., Satoh, M., Zhao, S., 2017]]: Improve tropical cloud overlap representation in GCMs based on cloud-resolving model data. J. Meteor. Res., doi:10.1007/s13351-018-7095-9 (accepted 2017/11/07). * [[https://doi.org/10.1002/2017JD027310|Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., and Muelmenstaedt, J., 2017]]: A multimodel study on warm precipitation biases in global models compared to satellite observations. J. Geophy. Res. Atmos., 122, 11806-11824. https://doi.org/10.1002/2017JD027310 * [[http://www.aics.riken.jp/aicssite/wp-content/uploads/2017/10/2017-001r.pdf|Yoshida, R., H. Yashiro, M. Satoh, and H. Tomita, 2017]] Modification of a baroclinic test case to a height-based coordinate system without topography implementation. AICS Technical Report, 2017-1, 16pp (accepted 2017/08/04). * [[https://doi.org/10.1142/9789813200913_0014|Miyakawa, T., and Sato, T., 2017]]: Global Cloud/Cloud-System Resolving Models and the Madden-Julian Oscillation. Chapter 14 of "In The Global Monsoon System: Research and Forecast, 3rd edition" (Eds. Chang, C.-P., Kuo, H.-C., Lau, N.-C., Johnson, R. H., Wang, B., Wheelet, M. C.), World Scientific Sereies on Asia-Pacific Weather and Climate, Vol. 9, 173-184, https://doi.org/10.1142/9789813200913_0014 (Mar 2017, published). * [[https://doi.org/10.1175/MWR-D-17-0158.1|Uchida, J., Mori, M., Hara, M., Satoh, M., Goto, D., Kataoka, T., Suzuki, K., Nakajima, T., 2017]]: Impact of lateral boundary errors on the simulation of clouds with a non-hydrostatic regional climate model. Mon. Wea. Rev., 145, 5059-5082, https://doi.org/10.1175/MWR-D-17-0158.1 (2017/10/05 accepted; 2017/10/21 on line released). * [[https://doi.org/10.2151/jmsj.2017-028|Terasaki, K., and T. Miyoshi, 2017]]: Assimilating AMSU-A radiances with the NICAM-LETKF. J. Meteor. Soc. Japan, 95, https://doi.org/10.2151/jmsj.2017-028 (2017/09/15 on-line released). * [[https://doi.org/10.2151/sola.2017-034|Yamashita, Y., Takigawa, M., Ishijima, K., Akiyoshi, H., Kodama, C., Yashiro, H., and Satoh, M., 2017]]: Resolution dependency of numerically simulated stratosphere-to-troposphere transport associated with mid-latitude closed cyclones in early spring around Japan. SOLA, 13, 186-191, https://doi.org/10.2151/sola.2017-034 (accepted 2017/09/20; released 2017/10/20). * [[https://doi.org/10.1002/2017GL074683|Miyakawa, T., Yashiro, H., Suzuki, T., Tatebe, H., Satoh, M., 2017]]: A Madden-Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Nino. Geophys. Res. Lett., 44, 9489-9495, DOI:10.1002/2017GL074683 (published online 2017/09/19). * [[https://doi.org/10.1175/JCLI-D-17-0068.1|Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., Nasuno, T., 2017]]: Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. J. Clim., 30, 9703-9724, https://doi.org/10.1175/JCLI-D-17-0068.1 (2017/9/14 online published). * [[https://doi.org/10.1002/2017JD027271|Kilpatrick, T., Xie, S.-P., and Nasuno, T., 2017]]: Diurnal convection-wind coupling in the Bay of Bengal. J. Geophys. Res. Atmos., 122, 9705-9720, doi:10.1002/2017JD027271 (2017/08/30 on line published). * [[https://doi.org/10.2151/jmsj.2017-022|Nasuno, T., K. Kikuchi, M. Nakano, Y. Yamada, M. Ikeda, and H. Taniguchi, 2017]]: Evaluation of the near real-time forecasts using a global nonhydrostatic model during the CINDY2011/DYNAMO. J. Meteor. Soc. Japan, 95, accepted. https://doi.org/10.2151/jmsj.2017-022 (2017/08/01 on line published) * [[https://doi.org/10.5194/acp-17-6455-2017|Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., and Kohma, M., 2017]]: Quasi-12h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6°E, 69.0°S). Atmos. Chem. Phys., 17, 6455-6476, https://doi.org/10.5194/acp-17-6455-2017 (Accepted: 21 Apr 2017; Published: 30 May 2017). * [[https://doi.org/10.1186/s40645-017-0127-8|Satoh, M., Tomita, H., Yashiro, H., Kajikawa, Y., Miyamoto, Y., Yamaura, T., Miyakawa, T., Nakano, M., Kodama, C., Noda, A. T., Nasuno, T., Yamada, Y., Fukutomi, Y., 2017]] Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer. Progress in Earth and Planetary Science, 4, 13, doi:10.1186/s40645-017-0127-8. (2017/4/7 accepted; 2017/4/28 published) * [[https://dx.doi.org/10.1175/MWR-D-16-0208.1|Nakano, M., Kubota, H., Miyakawa, T., Nasuno, T., Satoh, M., 2017]]: Genesis of super cyclone Pam (2015): Modulation of low-frequency large-scale circulations and the Madden-Julian oscillation by sea surface temperature anomalies. Mon. Wea. Rev., https://dx.doi.org/10.1175/MWR-D-16-0208.1, accepted (2017/04/26). * [[https://doi.org/10.1002/qj.3060|Kotsuki, S., Ota, Y. and Miyoshi, T., 2017]]: Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Q. J. R. Meteorol. Soc., 143, 2001-2015, doi:10.1002/qj.3060 (2017/4/19 accepted). * [[https://doi.org/10.5194/gmd-10-2201-2017|Niwa, Y., Fujii, Y., Sawa, Y., Iida, Y., Ito, A., Satoh, M., Imasu, R., Tsuboi, K., Matsueda, H., and Saigusa, N.]], 2017: A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0): 2. Optimization scheme and identical twin experiment of atmospheric CO2 inversion. Geosci. Model Dev., 10, 2201-2219, 2017. https://doi.org/10.5194/gmd-10-2201-2017 (accepted 2017/04/20). * [[https://doi.org/10.1007/s00382-016-3219-z|Kikuchi, K., Kodama, C., Nasuno, T., Nakano, M., Miura, H., Satoh, M., Noda, A. T., Yamada, Y., 2017]]: Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM. Climate Dyn., 48, 2507-2528. https://doi.org/10.1007/s00382-016-3219-z (2016/06/04; online 2016/06/13). * [[http://doi.org/10.5194/gmd-10-1157-2017|Niwa, Y., Tomita, H., Satoh, M., Imasu, R., Sawa, Y., Tsuboi, K., Matsueda, H., Machida, T., Sasakawa, M., Belan, B., and Saigusa, N., 2017]] A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0): 1. Off-line forward and adjoint transport models. Geosci. Model Dev., 10, 1157-1174, doi:10.5194/gmd-10-1157-2017. (2017/02/20 acceptedl 2017/03/17 online published) * [[https://www.cger.nies.go.jp/publications/report/i132/en/|Goto, D., N.A.J. Schutgens, E, Oikawa, T. Takemura, and T. Nakajima, 2017]]: Improvement of a global aerosol transport model through validation and implementation of a data assimilation system. CGER’S SUPERCOMPUTER MONOGRAPH REPORT, Vol.23, pp. 117. (2017/02/06) * [[https://doi.org/10.5194/gmd-2016-184|Nakano, M., Wada, A., Sawada, M., Yoshimura, H., Onishi, R., Kawahara, S., Sasaki, W., Nasuno, T., Yamaguchi, M., Iriguchi, T., Sugi, M., and Takeuchi, Y., 2017]]: Global 7-km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results. Geosci. Model Dev., 10, 1363-1381, https://doi.org/10.5194/gmd-2016-184 (2017/02/03 accepted; 2017/03/31 published) * [[https://doi.org/10.1186/s40645-017-0117-x|Nakajima, T., Misawa, S., Morino, Y., Tsuruta, H., Goto, D., Uchida, J., Takemura, T., Ohara, T., Oura, Y., Ebihara, M., Satoh, M., 2017]] Depiction of the model simulated atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Progress in Earth and Planetary Science, 4, 2, doi:10.1186/s40645-017-0117-x (2016/12/02 accepted; 2017/01/24 published). * [[https://doi.org/10.1002/2016MS000822|Tomassini, L., Field, P. R., Honnert, R., Malardel, S., McTaggart-Cowan, R., Saitou, K., Noda, A. T. and Seifert, A., 2017]]:, The “Grey Zone” cold air outbreak global model intercomparison: A cross-evaluation using large-eddy simulations. J. Adv. Model. Earth Syst., 9, doi:10.1002/2016MS000822 (2016/12/20; 2017/01/20 published). * [[https://doi.org/10.1002/2016JD025355|Kotsuki, S., T. Miyoshi, K. Terasaki, G.-Y. Lien, and E. Kalnay, 2017]]: Assimilating the Global Satellite Mapping of Precipitation Data with the Nonhydrostatic Icosahedral Atmospheric Model NICAM, J. Geophys. Res. Atmos., 122, 631-650, https://doi.org/10.1002/2016JD025355 (2016/12/22; 2017/01/18 published online). * [[https://dx.doi.org/10.1016/j.atmosenv.2017.01.030|Ngoc Trieu, T. T., Goto, D., Yashiro, H., Murata, R., Sudo, K., Tomita, H., Satoh, M., Nakajima, T., 2017]]: Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation, Atmospheric Environment, doi:10.1016/j.atmosenv.2017.01.030. (2017/01/14 accepted). * [[https://dx.doi.org/10.1175/JAS-D-16-0027.1|Roh, W., Satoh, M., Nasuno, T., 2017]]: Improvement of a cloud microphysics scheme for a global nonhydrostatic model using TRMM and a satellite simulator. J. Atmos. Sci., 74, 167-184. https://dx.doi.org/10.1175/JAS-D-16-0027.1 (2016/10/05; 2017/01/04 published) /*LABEL:NSW*/ ===== 2016 ===== * [[http://geoscienceletters.springeropen.com/articles/10.1186/s40562-016-0064-1|Nasuno, T., Yamada, H., Nakano, M., Kubota, H., Yoshida, R., 2016]]: Global cloud-permitting simulations of Typhoon Fengshen (2008), Geoscience Letters, 3, 32, DOI: 10.1186/s40562-016-0064-1 (2016/11/25, accepted). * [[http://doi.org/10.5194/gmd-2016-232|Niwa, Y., Fujii, Y., Sawa, Y., Iida, Y., Ito, A., Satoh, M., Imasu, R., Tsuboi, K., Matsueda, H., and Saigusa, N., 2016]]: A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0): 2. Optimization scheme and identical twin experiment of atmospheric CO2 inversion, Geosci. Model Dev. Discuss., http://doi.org/10.5194/gmd-2016-232, in review. * [[http://dx.doi.org/10.1016/j.jcp.2016.10.017|Iga, S., 2016]]: An equatorially enhanced grid with smooth resolution distribution generated by a spring dynamics method. J. Comp. Phys., accepted. http://dx.doi.org/10.1016/j.jcp.2016.10.017 * [[http://doi.org/10.5194/gmd-2016-231|Niwa, Y., Tomita, H., Satoh, M., Imasu, R., Sawa, Y., Tsuboi, K., Matsueda, H., Machida, T., Sasakawa, M., Belan, B., and Saigusa, N., 2016]]: A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0): 1. Off-line forward and adjoint transport models. Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-231. (2016/10/11; 2017/02/20 accepted) * [[http://doi.org/10.5194/gmd-2016-66|Haarsma, R. J., Roberts, M., Vidale, P. L., Senior, C., Bellucci, A., Corti, S., Fuckar, N., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, R., Lu, J., Luo, J.-J., Mao, J., Mizielinsky, M., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J. and von Storch, J.-S., 2016]]: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6.Geosci. Model Dev., 9, 4185-4208, doi:10.5194/gmd-2016-66 (2016/10/11). * [[https://doi.org/10.1002/2016JD024965|Miyamoto, Y., T. Yamaura, R. Yoshida, H. Yashiro, H. Tomita, and Y. Kajikawa, 2016]]: Precursors of deep moist convection in a subkilometer global simulation, J. Geophys. Res. Atmos., 121, 12080-12088, doi:10.1002/2016JD024965. * [[http://link.springer.com/chapter/10.1007/978-981-10-2669-0_7|Matsuoka, D., and Oouchi, K., 2016]]: 3-Dimensional Classification and Visualization of Clouds Simulated by Cloud-Resolving Atmospheric General Circulation Model. Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. Volume 645 of the series Communications in Computer and Information Science, 57-67. * [[https://doi.org/10.1002/2016JD025569|Kubokawa, H., Satoh, M., Suzuki, J., and Fujiwara, M., 2016]]: Influence of topography on temperature variations in the tropical tropopause layer. J. Geophys. Res., 121, 11556-11574, [[DOI:10.1002/2016JD025569|https://doi.org/10.1002/2016JD025569]] (2016/9/26). * [[http://doi.org/10.2151/sola.2016-053|Yashiro. H., Y. Kajikawa, Y. Miyamoto, R. Yoshida, T. Yamaura, and H. Tomita, 2016]]: Resolution dependency of diurnal precipitation cycle simulated by global cloud resolving model, SOLA, 12, 272-276. http://doi.org/10.2151/sola.2016-053 * [[http://dx.doi.org/10.1016/j.accre.2016.04.001|Yin, X-M., Dai, T., Xin, J-Y., Gong, D-Y., Jing, Y., Nakajima T., Shi, G-Y., 2016]]: Estimation of aerosol properties over the Chinese desert region with MODIS AOD assimilation in a global model, Advances in Climate Change Research. http://dx.doi.org/10.1016/j.accre.2016.04.001 * [[http://dx.doi.org/10.1016/j.atmosres.2016.03.016|Yin, X-M., Dai, T., Schutgens, N. A.J., Goto, D., Nakajima, T., Shi, G., 2016]]: Effects of data assimilation on the global aerosol key optical properties simulations, Atmospheric Research, Vol. 178-179, pp. 175-186. http://dx.doi.org/10.1016/j.atmosres.2016.03.016 * [[http://157.82.240.172/~satoh/paper/Satoh_etal2016SOLA_RCE.pdf|Satoh, M., Aramaki, K., and Sawada, M., 2016]]: Structure of tropical convective systems in aqua-planet experiments: Radiative-convective equilibrium versus the Earth-like experiment.SOLA, 12, 220-224. doi:10.2151/sola.2016-044 (2016/06/27) * [[http://www.cger.nies.go.jp/publications/report/i127/en/|Satoh, M., Roh, W., Hashino, T., 2016]] Evaluations of clouds and precipitations in NICAM using the Joint Simulator for Satellite Sensors. CGER's Supercomputer Monograph Report. Vol. 22, 110 pp, ISSN 1341-4356, CGER-I127-2016. (2016/04/01) (on line published, 2016/06/22, Japanese Introduction: http://www.cger.nies.go.jp/publications/report/i127/ja/ ) * [[https://www.jstage.jst.go.jp/article/sola/12/0/12_2016-041/_article|Yamada, H., Nasuno, T., Yanase, W., and Satoh, M., 2016]]: Role of the vertical structure of a simulated tropical cyclone in its motion: A case study of Typhoon Fengshen (2008). SOLA, 12, 203-208. http://doi.org/10.2151/sola.2016-041 (2016/06/22). * [[http://doi.org/10.1016/j.atmosenv.2016.06.015|Daisuke Goto,Kayo Ueda, Chris Fook Sheng Ng, Akinori Takami, Toshinori Ariga, Keisuke Matsuhashi, Teruyuki Nakajima, 2016]] Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios. Atmos. Environ.140,320-332. http://doi.org/10.1016/j.atmosenv.2016.06.015 (2016/06/15) * [[http://doi.org/10.1145/2929908.2929911|Hisashi Yashiro, Masaaki Terai, Ryuji Yoshida, Shin-ichi Iga, Kazuo Minami, and Hirofumi Tomita. 2016]]. Performance Analysis and Optimization of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on the K Computer and TSUBAME2.5. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '16). ACM, New York, NY, USA, Article 3 , 8 pages. http://dx.doi.org/10.1145/2929908.2929911 (2016/06/09) * [[http://doi.org/10.2151/jmsj.2016-022|Shibuya, R., H. Miura, and K. Sato, 2016]]: A grid transformation method for a quasi-uniform, circular fine region using the spring dynamics. J. Meteor. Soc. Japan, 94. http://doi.org/10.2151/jmsj.2016-022 (2016/06/08) * [[http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0012.1|Matsuno, T., 2016]]: Prologue: Tropical Meteorology 1960-2010--Personal Recollections. Meteor. Monograph, Multiscale Convection-Coupled Systems in the Tropics: A tribute to Dr. Michio Yanai, 56, Prologue, vii-xv. http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0012.1 (2016/04/27) * [[http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0008.1|Oouchi, K. and M. Satoh, 2016]]: A synoptic-scale cold-reservoir hypothesis on the origin of the mature-stage super cloud cluster: a case study with a global nonhydrostatic model. Meteor. Monograph, Multiscale Convection-Coupled Systems in the Tropics: A tribute to Dr. Michio Yanai, 56, Chapter 14, 14.1-14.24. http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0008.1 (2016/05/27) * [[http://doi.org/10.1002/2016JD024775|Hashino, T., Satoh, M., Hagihara, Y., Kato, S., Kubota, T., Matsui, T., Nasuno, T., Okamoto, H., and Sekiguchi, M., 2016]]: Evaluating Cloud Radiative Effects simulated by NICAM with A-train. J. Geophys. Res., 121, 7041-7063. http://doi.org/10.1002/2016JD024775 (2016/05/28). * [[http://dx.doi.org/10.1175/JAS-D-15-0318.1|Ohno, T., Satoh, M., Yamada, Y., 2016]]: Warm Cores, Eyewall Slopes, and Intensities of Tropical Cyclones Simulated by a 7-km-Mesh Global Nonhydrostatic Model. J. Atmos. Sci., 73, 4289-4309. http://dx.doi.org/10.1175/JAS-D-15-0318.1 (2016/05/26). * [[http://doi.org/10.1038/srep26561|Sato, Y., Miura, H., Yashiro, H., Goto, D., Takemura, T., Tomita, H., and Nakajima, T.,2016]]: Unrealistically pristine air in the Arctic produced by current global scale models. Sci. Rep. 6, 26561; doi:10.1038/srep26561 (2016/05/25). * [[http://dx.doi.org/10.1175/JCLI-D-15-0668.1|Chen, Y.-W., Seiki, T., odama, C., Satoh, M., Noda, A. T., Yamada, Y., 2016]]: High cloud responses to global warming simulated by two different cloud microphysics schemes implemented in the nonhydrostatic icosahedral atmospheric model (NICAM).J. Climate, 29, 5949-5964. http://dx.doi.org/10.1175/JCLI-D-15-0668.1 (2016/05/11). * [[http://doi.org/10.1186/s40645-016-0094-5|Kajikawa, Y., Miyamoto, Y., Yoshida, R., Yamaura, T., Yashiro, H., Tomita, H., 2016]]: Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing. Progress in Earth and Planetary Science, 3, 16, DOI: 10.1186/s40645-016-0094-5 (2016/05/07). * [[http://ris-geo.jp/wp/wp-content/uploads/2016/04/201_ronbun_YOSHIZAKI.pdf|Yoshizaki, M., 2016:]] Comparison of Models Having Positive-only Wave CISK with the NICAM Outputs about Eastward Propagation of Super Clusters in the Equatorial Region -Part 1. Approach from a Full Model-. 地球環境研究, 18, 1-15. * [[http://ris-geo.jp/wp/wp-content/uploads/2016/04/202_ronbun_YOSHIZAKI.pdf|Yoshizaki, M., 2016:]] Comparison of Models Having Positive-only Wave CISK with the NICAM Outputs about Eastward Propagation of Super Clusters in the Equatorial Region -Part 2. Approach from a Simplest Model-, 地球環境研究, 18, 17-27. * [[http://dx.doi.org/10.1175/JHM-D-15-0111.1|Matsui, T., W.-K. Tao, J. Chern, S. Lang, M. Satoh, T. Hashino, and T. Kubota, 2016:]] On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models. Journal of Hydrometeorology, 17, 1425-1445. http://dx.doi.org/10.1175/JHM-D-15-0111.1.(2016/02/24) * [[http://dx.doi.org/10.1002/2016GL067742|Noda, A. T., Seiki, T., Satoh, M., Yamada, Y., 2016]]: High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global non-hydrostatic simulations. Geophys. Res. Lett., 43, 2307-2314, DOI:10.1002/2016GL067742. (2016/02/16) * [[http://doi.org/10.5194/gmd-2016-4|Yashiro, H., Terasaki, K., Miyoshi, T., and Tomita, H., 2016]]: Performance evaluation of throughput-aware framework for ensemble data assimilation: The case of NICAM-LETKF, Geosci. Model Dev., 9, 2293-2300, doi:10.5194/gmd-2016-4.(2016/07/05 Accepted) * [[http://dx.doi.org/10.1175/MWR-D-15-0271.1|Uchida, J., Mori, M., Nakamura, H., Satoh, M., Suzuki, K., Nakajima, T., 2016]]: Error and energy budget analysis of a non-hydrostatic stretched-grid global atmospheric model. Mon. Wea. Rev., 144, 1423-1447, http://dx.doi.org/10.1175/MWR-D-15-0271.1 (2016/01/22). ===== 2015 ===== * [[http://doi.org/10.2151/sola.2015-038|Takasuka, D., Miyakawa, T., Satoh, M., Miura, H., 2015]]: Topographical effects on the internally produced MJO-like disturbances in an aqua-planet version of NICAM. SOLA, 11, 170-176, doi:10.2151/sola.2015-038 (2015/11/12). * [[http://dx.doi.org/10.1109/MC.2015.332|Miyoshi, T., Kondo, K., Terasaki, K., 2015]]: Big Ensemble Data Assimilation in Numerical Weather Prediction. Computer, 48, 15-21, doi:10.1109/MC.2015.332 (2015/11/10). * [[http://dx.doi.org/10.1007/978-4-431-55420-2_2|Nakajima, K., Satoh, M., Furumura, T., Okuda, H., Iwashita, T., Sakaguchi, H., Katagiri, T., Matsumoto, M., Ohshima, S., Jitsumoto, H., Arakawa, T., Mori, H., Kitayama, T., Ida, A., Matsuo, M. Y., 2015]]: ppOpen-HPC: Open source infrastructure for development and execution of large-scale scientific applications on post-peta-scale supercomputers with automatic tuning (AT). "Optimization in the Real World, Toward Solving Real-World Optimization Problems", Fujisawa, K., Shinano, Y., Waki, H. (Eds.), Mathematics for Industry, 13, 15-35. https://doi.org/10.1007/978-4-431-55420-2_2 * [[http://doi.org/10.2151/jmsj.2015-055|Miura, H., T. Suematsu, and T. Nasuno, 2015]]: An ensemble hindcast of the Madden-Julian Oscillation during the CINDY2011/DYNAMO field campaign and influence of seasonal variation of sea surface temperature. J. Meteor. Soc. Japan, 93A. https://doi.org/10.2151/jmsj.2015-055 * [[https://doi.org/10.5194/amt-8-3493-2015|Leinonen, J., Lebsock, M. D., Tanelli, S., Suzuki, K., Yashiro, H., and Miyamoto, Y., 2015]]: Performance assessment of a triple-frequency spaceborne cloud-precipitation radar concept using a global cloud-resolving model. Atmos. Meas. Tech. 8, 3493-3517. https://doi.org/10.5194/amt-8-3493-2015 * [[http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-12-00227.1|Illingworth, A., Barker, H., Beljaars, A., Ceccaldi, M., Chepfer, H., Colec, J., Delanoe, J., Domenech, C., Donovan, D., Fukuda, S., Hirakata, M., Hogan, R., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M., Wandinger, U., Wehr, T., Zadelhoff, G., 2015]]: The EARTHCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation. Bull. Amer. Meteor. Soc., 96, 1311-1332. https://doi.org/10.1175/BAMS-D-12-00227.1 * [[https://doi.org/10.5194/amt-8-3493-2015|Leinonen, J., Lebsock, M. D., Tanelli, S., Suzuki, K., Yashiro, H., and Miyamoto, Y., 2015]]: Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model, Atmos. Meas. Tech., 8, 3493-3517, https://doi.org/10.5194/amt-8-3493-2015 . * [[http://library.wmo.int/pmb_ged/wmo_1156_en.pdf|Rabier, F., Thorpe, A. J., Brown, A. R., Charron, M., Doyle, J. D., Hamill, T. M., Ishida, J., Lapenta, B., Reynolds, C. A., and Satoh, M.]], 2015: Global environmental prediction. Chapter 16. Seamless Prediction of the Earth System: From Minutes to Months, World Meteorological Organization, No. 1156, 311-330 (2015/06/29). * [[http://onlinelibrary.wiley.com/doi/10.1002/2014JD021693/abstract|Goto, D., Nakajima, T., Dai, T., Takemura, T., Kajino, M., Matsui, H., Takami, A., Hatakeyama, S., Sugimoto, N., Shimizu, A., and Ohara, T., 2015]]: An evaluation of simulated particulate sulfate over East Asia through global model intercomparison. J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD021693. * [[http://www.sciencedirect.com/science/article/pii/S0021999115003605|Iga, S., 2015]]: Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method. J. Comp. Phys., 297, 381-406, doi:10.1016/j.jcp.2015.05.026 (2015.6.4). * [[https://doi.org/10.1175/BAMS-D-13-00242.1|Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J., Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C., Scoccimarro, E., Sobel, A. H., Strazzo, S., Villarini, G., Wehner, M., Zhao, M., Kossin, J. P., LaRow, T., Oouchi, K., Schubert, S., Wang, H., Bacmeister, J., Chang, P., Chauvin, F., Jablonowski, C., Kumar, A., Murakami, H., Ose, T., Reed, K. A., Saravanan, R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas, J. A., Henderson, N., 2015]] Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteorol. Soc., 96, 997-1017, doi:10.1175/BAMS-D-13-00242.1 (2015/06). * [[https://www.jstage.jst.go.jp/article/sola/11/0/11_2015-020/_article|Kajikawa, Y., Yamaura, T., Tomita, H., Satoh, M., 2015]]: Impact of tropical disturbance on the Indian summer monsoon onset simulated by a global cloud-system-resolving model. SOLA, 11, 80-84, doi:10.2151/sola.2015-020 (2015/05/11). * [[http://dx.doi.org/10.1002/2015GL064282|Seiki, T., Kodama, C., Satoh, M., Hashino, T., Hagihara, Y., Okamoto, H., 2015]]: Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution AGCM. Geophys. Res. Lett., 42, 4150-4157, doi:10.1002/2015GL064282 (2015/05/06). /*LABEL:NDW*/ * [[http://doi.org/10.2151/jmsj.2015-025|Satoh, M., Yamada, Y., Sugi, M., Kodama, C., Noda, A. T., 2015]]: Constraint on future change in global frequency of tropical cyclones due to global warming. J. Meteorol. Soc. Japan, 93, 489-500, doi:10.2151/jmsj.2015-025 (2015/05/01). * [[http://doi.org/10.2151/jmsj.2015-024|Kodama, C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T., Tomita, T., Yamaura, T., Takahashi, T. G., Hara, M., Kawatani, Y., Satoh, M., Sugi, M.2015]]: A 20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc. Japan, 93, 393-424, doi:10.2151/jmsj.2015-024. * [[http://dx.doi.org/10.1002/2014JD022374|Klingaman, N. P., S. J. Woolnough, X. Jiang, D. Waliser, P. K. Xavier, J. Petch, M. Caian, C. Hannay, D. Kim, H.-Y. Ma, W. J. Merryfield, T. Miyakawa, M. Pritchard, J. A. Ridout, R. Roehrig, E. Shindo, F. Vitart, H. Wang, N. R. Cavanaugh, B. E. Mapes, A. Shelly, and G. Zhang, 2015]], Vertical structure and physical processes of the Madden Julian Oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening, Journal of Geophysical Research, 120, 4690-4717, doi:10.1002/2014JD022374. * [[http://dx.doi.org/10.1007/s00704-015-1456-4|Fukutomi, Y., Kodama, C., Yamada, Y., Noda, A. T., Satoh, M., 2015]]: Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model. Theoretical and Applied Climatology, http://dx.doi.org/10.1007/s00704-015-1456-4 . * [[http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00241.1|Seiki, T., Kodama, C., Noda, A. T., Satoh, M., 2015]]: Improvements in global cloud-system resolving simulations by using a double-moment bulk cloud microphysics scheme. J. Climate, 28, 2405-2419, http://dx.doi.org/10.1175/JCLI-D-14-00241.1 . /*LABEL:NDW*/ * [[http://dx.doi.org/10.2151/sola.2015-006|Terasaki, K., Sawada, M., Miyoshi, T., 2015]]: Local Ensemble Transform Kalman Filter Experiments with the Nonhydrostatic Icosahedral Atmospheric Model NICAM. SOLA, 11, 23-26, http://dx.doi.org/10.2151/sola.2015-006 . * [[http://dx.doi.org/10.1175/MWR-D-14-00132.1|Nasuno, T., T. Li, K. Kikuchi, 2015]]: Moistening processes before the convective initiation of Madden Julian Oscillation events during the CINDY2011/DYNAMO period. Mon. Wea. Rev., 143, 622-643, http://dx.doi.org/10.1175/MWR-D-14-00132.1 . * [[http://dx.doi.org/10.1175/JAS-D-14-0078.1|Ohno, T., Satoh, M., 2015]]: On the warm core of the tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551-571, http://dx.doi.org/10.1175/JAS-D-14-0078.1 . * [[http://dx.doi.org/10.5194/gmd-8-235-2015|Goto, D., Dai, T., Satoh, M., Tomita, H., Uchida, J., Misawa, S., Inoue, T., Tsuruta, H., Ueda, K., Ng, C. F. S., Takami, A., Sugimoto, N., Shimizu, A., Ohara, T., and Nakajima, T., 2015]]: Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan, Geosci. Model Dev., 8, 235-259, doi:10.5194/gmd-8-235-2015. * [[http://dx.doi.org/10.1002/2014GL062479|Nakano, M., Sawada, M., Nasuno, T., Satoh, M., 2015]]: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, Geophys. Res. Lett., 42, 565-571, doi:10.1002/2014GL062479. * [[http://link.springer.com/article/10.1007/s00376-014-4098-z|Dai, T., Shi, G., Nakajima, T., 2015]]: Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model. Adv. Atmos. Sci., 32, 743-758, doi:10.1007/s00376-014-4098-z. * [[http://dx.doi.org/10.1002/asl2.558|Miyamoto, Y., R. Yoshida, T. Yamaura, H. Yashiro, H. Tomita and Y. Kajikawa, 2015]]: Does convection vary in different cloudy disturbances? Atmospheric Science Letters, 16, 305-309, doi10.1002/asl2.558 * [[http://www.atmos-chem-phys.net/15/297/2015/acp-15-297-2015.html|Eguchi, N., K. Kodera, and T. Nasuno, 2015]]: A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming. Atmospheric Chemistry and Physics, 15, 297-304. doi:10.5194/acp-15-297-2015 * [[http://dx.doi.org/10.2151/jmsj.2015-010|Noda, A. T., Yamada, Y., Kodama, C., Miyakawa, T., Seiki, T., Satoh, M., 2015]]: Cold and warm rain simulated using a global nonhydrostatic model without cumulus parameterization, and their responses to a warmer atmospheric condition. J. Meteor. Soc. Japan, 93, accepted. doi:10.2151/jmsj.2015-010. ===== 2014 ===== * [[http://dx.doi.org/10.2151/sola.2014-043|Kotsuki, S., K. Terasaki, and T. Miyoshi, 2014]]: GPM/DPR Precipitation Compared with a 3.5-km-Resolution NICAM Simulation. SOLA, 10, 204-209. http://dx.doi.org/10.2151/sola.2014-043. * [[http://dx.doi.org/10.1002/2014GL061812|Noda, A. T. and M. Satoh, 2014]]: Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophys. Res. Lett., 41, 7754-7761, doi:10.1002/2014GL061812. * [[http://dx.doi.org/10.1175/JCLI-D-14-00200.1|Horn, M., K. Walsh, M. Zhao, S. J. Camargo, E. Scoccimarro, H. Murakami, H. Wang, A. Ballinger, A. Kumar, D. A. Shaevitz, J. A. Jonas, D. Kim, K. Oouchi, K. Emanuel, and M. Roberts, 2014]]: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations, J. Climate, 27, 9197-9213. http://dx.doi.org/10.1175/JCLI-D-14-00200.1 * [[http://dx.doi.org/10.1016/j.procs.2014.05.083|Arakawa, T., T. Inoue, and M. Satoh, 2014]]: Performance Evaluation and Case Study of a Coupling Software ppOpen-MATH/MP. Procedia Computer Science, 29, 924-935. doi:10.1016/j.procs.2014.05.083 * [[http://dx.doi.org/10.1186/s40645-014-0018-1|Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T., Inoue, T., Kubokawa, H., 2014]]: The Non-hydrostatic Icosahedral Atmospheric Model: Description and Development. Progress in Earth and Planetary Science, 1, 18. doi:10.1186/s40645-014-0018-1 * [[http://dx.doi.org/10.1175/JCLI-D-14-00179.1|Noda, A. T., Satoh, M., Yamada, Y., Kodama, C., Seiki, T., 2014]]: Responses of tropical and subtropical high-cloud statistics to global warming. J. Climate, 27, 7753-7768. http://dx.doi.org/10.1175/JCLI-D-14-00179.1 * [[http://dx.doi.org/10.1016/j.envpol.2014.06.006|Goto, D., 2014]]: Modeling of black carbon in Asia using a global-to-regional seamless aerosol-transport model. Environmental Pollution, 195, 330-335. DOI:10.1016/j.envpol.2014.06.006 * [[http://dx.doi.org/10.1016/j.envpol.2014.06.021|Dai, T., N. A. J. Schutgens, D. Goto, G. Shi, and T. Nakajima, 2014]]: Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. Environmental Pollution. 195, 319-329. DOI:10.1016/j.envpol.2014.06.021 * [[http://dx.doi.org/10.1002/2013MS000301|Tsushima, Y., Iga, S., Tomita, H., Satoh, M., Noda, A. T., Webb, M., 2014]]: High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes. Journal of Advances in Modeling Earth Systems, 06, doi:10.1002/2013MS000301 * [[http://dx.doi.org/10.1002/2013JD021086|Seiki, T., Satoh, M., Tomita, H., Nakajima, T., 2014]]: Simultaneous evaluation of ice cloud microphysics and non-sphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in-situ observations. J. Geophys. Res. Atmos., 119, 6681-6701, doi:10.1002/2013JD021086. /*LABEL:NDW*/ * [[http://dx.doi.org/10.1002/2014GL059972|Kodama, C., Iga, S., Satoh, M., 2014]]: Impact of the sea surface temperature rise on storm-track clouds in global non-hydrostatic aqua-planet simulations. Geophys. Res. Lett., 41, 3545-3552, doi:10.1002/2014GL059972. * [[http://dx.doi.org/10.1038/ncomms4769|Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T., Yamada, Y., Kodama, C., Kimoto, M., Yoneyama, K., 2014]]: Madden-Julian Oscillation prediction skill of a new-generation global model. Nature Commun., 5, 3769. doi:10.1038/ncomms4769 * [[http://dx.doi.org/10.1016/j.parco.2014.06.002|Kodama, C., Terai, M., Noda, A. T., Yamada, Y., Satoh, M., Seiki, T., Iga, S., Yashiro, H., Tomita, H., Minami, K.,2014]]: Scalable rank-Mmpping algorithm for an icosahedral Grid system on the massive parallel computer with a 3-D torus network. Parallel Computing, 40, 362-373. http://dx.doi.org/10.1016/j.parco.2014.06.002 * [[http://dx.doi.org/10.1175/JAS-D-13-0252.1|Roh, W., and Satoh, M., 2014]]: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical open ocean. J. Atmos. Sci., 71, 2654-2673. http://dx.doi.org/10.1175/JAS-D-13-0252.1 /*LABEL:NDW*/ * [[http://dx.doi.org/10.2151/sola.2014-008|Noda, A. T., Nakamura, K., Iwasaki, T., Satoh, M., 2014]]: Responses of subtropical marine stratocumulus cloud to perturbed atmospheres. SOLA, 10, 34-38. http://dx.doi.org/10.2151/sola.2014-008 * [[http://dx.doi.org/10.3389/feart.2014.00001|Oouchi, K, M. Satoh, Y. Yamada, H. Tomita, M. Sugi, 2014]]: A hypothesis and a case-study projection of an influence of MJO modulation on boreal-summer tropical cyclogenesis in a warmer climate with a global non-hydrostatic model: a transition toward the central Pacific?, Front. Earth Sci.2:1, doi:10.3389/feart.2014.00001. * [[http://dx.doi.org/10.2151/jmsj.2014-201|Arakane, S., Satoh, M., Yanase, W., 2014]]: Excitation of Deep Convection to the North of Tropical Storm Bebinca (2006). J. Meteor. Soc. Japan, 92, 141-161. http://dx.doi.org/10.2151/jmsj.2014-201 * [[http://dx.doi.org/10.1016/j.atmosenv.2013.10.018|Dai, T., D. Goto, N.A.J. Schutgens, X. Dong, G. Shi, T. Nakajima, 2014]]: Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmospheric Environment, 82, 71-82. http://dx.doi.org/10.1016/j.atmosenv.2013.10.018 * [[http://dx.doi.org/10.1016/j.jcp.2013.10.013|Iga, S., and H. Tomita, 2014]]: Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method. J. Comp. Phys., 258, 208-226. http://dx.doi.org/10.1016/j.jcp.2013.10.013 * [[http://dx.doi.org/10.1175/JAS-D-12-0195.1|Seiki, T. and Nakajima, T., 2014]]: Aerosol Effects of the Condensation Process on a Convective Cloud Simulation. J. Atmos. Sci., 71, 833-853. http://dx.doi.org/10.1175/JAS-D-12-0195.1 /*LABEL:NDW*/ * [[http://dx.doi.org/10.1175/MWR-D-13-00115.1|Miyamoto, Y., Satoh, M., Tomita, H., Oouchi, K., Yamada, Y., Kodama, C., Kinter III, J., 2014]]: Gradient wind balance in tropical cyclones in high--resolution--global experiments. Mon. Wea. Rev., 142, 1908-1926. http://dx.doi.org/10.1175/MWR-D-13-00115.1 ===== 2013 ===== * [[http://dx.doi.org/10.1002/grl.50944|Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita, 2013]]: Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922-4926. http://dx.doi.org/10.1002/grl.50944 * [[http://dx.doi.org/10.2151/jmsj.2013-A02|Blackburn, M., D. L. Williamson, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013]]: The Aqua-Planet Experiment(APE): Control SST simulation. J. Meteor. Soc. Japan, 91A, 17-56. http://dx.doi.org/10.2151/jmsj.2013-A02 * [[http://dx.doi.org/10.2151/jmsj.2013-A03|Williamson, D. L., M. Blackburn, K. Nakajima, W. Ohfuchi, Y. O. Takahashi, Y.-Y. Hayashi, H. Nakamura, M. Ishiwatari, J. McGregor, H. Borth, V. Wirth, H. Frank, P. Bechtold, N. P. Wedi, H. Tomita, M. Satoh, M. Zhao, I. M. Held, M. J. Suarez, M.-I. Lee, M. Watanabe, M. Kimoto, Y. Liu, Z. Wang, A. Molod, K. Rajendran, A. Kitoh, and R. Stratton, 2013]]: The Aqua-Planet Experiment(APE): Response to changed SST profile. J. Meteor. Soc. Japan, 91A, 57-89. http://dx.doi.org/10.2151/jmsj.2013-A03 * [[http://dx.doi.org/10.2151/jmsj.2013-A07|Yasunaga, K., T. Nasuno, H. Miura, Y. N. Takayabu, and M. Yoshizaki, 2013]]: Afternoon precipitation peak simulated in an aqua-planet global non-hydrostatic model (aqua-planet-NICAM). J. Meteor. Soc. Japan, 91A, 217-229. http://dx.doi.org/10.2151/jmsj.2013-A07 /*LABEL:APE*/ * [[http://dx.doi.org/10.1007/978-3-642-13574-3|Satoh, M., 2013]]: Atmospheric Circulation Dynamics and General Circulation Models, 2nd edition. Springer-PRAXIS, 757 pp, hard-cover: ISBN 978-3-642-13573-6; e-book: ISBN 978-3-642-13574-3. http://dx.doi.org/10.1007/978-3-642-13574-3 * [[http://dx.doi.org/10.1175/JCLI-D-13-00182.1|Yamada, Y., and Satoh, M., 2013]]: Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics. J. Climate, 26, 9931-9945. http://dx.doi.org/10.1175/JCLI-D-13-00182.1 * [[http://dx.doi.org/10.2151/sola.2013-029|Satoh, M., and Kitao, Y., 2013]]: Numerical examination of the diurnal variation of summer precipitation over southern China. SOLA, 9, 129-133. http://dx.doi.org/10.2151/sola.2013-029 * [[http://dx.doi.org/10.2151/sola.2013-027|Satoh, M., Nihonmatsu, R., Kubokawa, H., 2013]]: Environmental conditions for tropical cyclogenesis associated with African easterly waves. SOLA, 9, 120-124. http://dx.doi.org/10.2151/sola.2013-027 * [[http://dx.doi.org/10.2151/jmsj.2013-601|Noda, A. T., Nakamura, K., Iwasaki, T., and Satoh, M., 2013]]: A Numerical Study of a Stratocumulus-topped Boundary-layer: Relations of Decaying Clouds with Stability Parameters across Inversion. J. Meteorol. Soc. Japan, 91, 727-746. http://dx.doi.org/10.2151/jmsj.2013-601 * [[http://dx.doi.org/10.2151/sola.2013-020|Yamaura, T., Kajikawa, Y., Tomita, H., Satoh, M., 2013]]: Possible impact of a tropical cyclone on the northward migration of the baiu frontal zone. SOLA, 9, 89-93. http://dx.doi.org/10.2151/sola.2013-020 * [[http://dx.doi.org/10.1002/jgrd.50564|Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., Okamoto, H., 2013]]: Evaluating Global Cloud Distribution and Microphysics from the NICAM against CloudSat and CALIPSO. J. Geophys. Res., 118, 7273-7292. http://dx.doi.org/10.1002/jgrd.50564 * [[http://dx.doi.org/10.1002/jgrd.50582|Ham, S.-H., Sohn, B.-J., Kato, S., Satoh, M., 2013]]: Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations. J. Geophys. Res., 118, 9930-9947. http://dx.doi.org/10.1002/jgrd.50582 * [[http://dx.doi.org/10.2151/sola.2013-016|Nasuno, T., 2013]]: Forecast skill of Madden-Julian Oscillation events in a global nonhydrostatic model during the CINDY2011/DYNAMO observation period, SOLA, 9, 69-73. http://dx.doi.org/10.2151/sola.2013-016 * [[http://dx.doi.org/10.1007/s00703-013-0272-6|Aizawa, T., Tanaka, H. L., Satoh, M., 2013]]: Rapid Development of Arctic Cyclone Simulated by the Cloud Resolving Global Model NICAM. Meteorology of Atmospheric Physics, 1-13, doi:10.1007/s00703-013-0272-6. * [[http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00043.1|Kinter III, J. L., B. Cash, D. Achuthavarier, J. Adams, E. Altshuler, P. Dirmeyer, B. Doty, B. Huang, L. Marx, J. Manganello, C. Stan, T. Wakefield, E. Jin, T. Palmer, M. Hamrud, T. Jung, M. Miller, P. Towers, N. Wedi, M. Satoh, H. Tomita, C. Kodama, T. Nasuno, K. Oouchi, Y. Yamada, H. Taniguchi, P. Andrews, T. Baer, M. Ezell, C. Halloy, D. John, B. Loftis, R. Mohr, and K. Wong, 2013]]: Revolutionizing Climate Modeling - Project Athena: A Multi-Institutional, International Collaboration. Bull. Am. Meteorol. Soc., 94, 231-245. http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00043.1 * [[http://dx.doi.org/10.1002/jgrd.50121|Dodson, J. B., D. A. Randall and K. Suzuki, 2013]]: Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM. J. Geophys. Res. Atmos., 18, 1852-1867. http://dx.doi.org/10.1002/jgrd.50121 * [[http://dx.doi.org/10.1002/jgrd.50043|Suzuki, K., G. L. Stephens and M. D. Lebsock, 2013]]: Aerosol effect on the warm rain formation process: Satellite observations and modeling. J. Geophys. Res. Atmos., 118, 170-184. http://dx.doi.org/10.1002/jgrd.50043 /*LABEL:AERO*/ * [[http://dx.doi.org/10.1175/MWR-D-13-00083.1|Miura, H., 2013]]: An Upwind-Biased Conservative Transport Scheme for Multi-stage Temporal Integrations on Spherical Icosahedral Grids. Mon. Wea. Rev., 141, 4049-4068. http://dx.doi.org/10.1175/MWR-D-13-00083.1 * [[http://dx.doi.org/10.1175/MWR-D-11-00355.1|Miura, H., Skamarock, W. C., 2013]]: An Upwind-Biased Transport Scheme Using a Quadratic Reconstruction on Spherical Icosahedral Grids. Mon. Wea. Rev., 141, 832-847. http://dx.doi.org/10.1175/MWR-D-11-00355.1 ===== 2012 ===== * [[http://doi.org/10.1117/12.977609|Inoue, T., Rajendran, K., Satoh, M., Miura, H., Schmetz, J., 2012]]: Semi-diurnal variation of surface rainfall studied from global cloud-system resolving model and satellite observations. Proc. SPIE. 8529, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions IV, 85290K, doi:10.1117/12.977609.(Proceding) * [[http://dx.doi.org/10.1029/2012JD017737|Kubokawa, H., Fujiwara, M., Nasuno, T., Miura, H., Yamamoto, M., Satoh, M.,2012]]: Analysis of the tropical tropopause layer using the Nonhydrostatic ICosahedral Atmospheric Model (NICAM): 2. An experiment under the atmospheric conditions of December 2006--January 2007. J. Geophys. Res.,117,D17114,doi:10.1029/2012JD017737. * Kodama C., A. T. Noda, and M. Satoh, An Assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators, J. Geophys. Res, doi:10.1029/2011JD017317. /*LABEL:NSW*/ /*LABEL:EVAL*/ * Oouchi, K., H. Taniguchi, T. Nasuno, M. Satoh, H. Tomita, Y. Yamada, M. Ikeda, R. Shirooka, H. Yamada, K. Yoneyama, 2012: A prototype quasi real-time intra-seasonal forecasting of tropical convection over the warm pool region: a new challenge of global cloud-system-resolving model for a field campaign. Nova Science Publishers, Inc., Eds. K. Oouchi and H. Fudeyasu, pp.233-248. /*LABEL:REAL*/ * Yamada, Y., K. Oouchi, M. Satoh, A.T. Noda and H.Tomita, 2011: Sensitivity of tropical cyclones to large-scale environment in a global non-hydrostatic model with explicit cloud microphysics. Nova Science Publishers, Inc., (Eds. K. Oouchi and H. Fudeyasu), Chapter 7, 145-159. * Yanase, W., Satoh, M., Iga, S., Chan, J. C. L., Fudeyasu, H., Wang, Y., Oouchi, K., 2011: Multi-scale dynamics of tropical cyclone formations in an equilibrium simulation using a global cloud-system resolving model. Nova Science Publishers, Inc., (Eds. K. Oouchi and H. Fudeyasu), Chapter 10, 221-231. * Oouchi, K., M. Satoh, and W. Mashiko., 2012: Tropical cyclone research with numerical models -Current status and future prospect. Kisyo-kenkyu Note. Meteorological Society of Japan (in Japanese), in press. /*LABEL:CYC*/ * [[http://dx.doi.org/10.1029/2012JD017474|Niwa, Y., Machida, T., Sawa, Y., Matsueda, H., Schuck, T. J., Brenninkmeijer, C. A. M., Imasu, R., and Satoh, M., 2012]]: Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements. J. Geophys. Res., 117, D11303, doi:10.1029/2012JD017474. * Yoshizaki, M., Yasunaga, K., Iga, S.-I., Satoh, M., Nasuno, T., Noda, A. T., Tomita, H., 2012: Why do super clusters and Madden Julian Oscillation exist over the equatorial region? SOLA, 8, 33-36, doi:10.2151/sola.2012-009. * Yoshizaki, M., Iga S., and Satoh, M., 2012: Eastward propagating property of large-scale precipitation systems simulated in the coarse-resolution NICAM and an explanation of its formation. SOLA, 8, 21-24, doi:10.2151/sola.2012-006. * Noda, A. T., Oouchi, K., Satoh, M., Tomita, H., 2012: Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization. J. Climate, 25, 5119-5134. * Yanase, W., Satoh, M., Taniguchi, H., Fujinami, H., 2012: Seasonal and intra-seasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon. J. Climate, 25, 2914-2930. * [[http://dx.doi.org/10.1175/JCLI-D-11-00152.1|Satoh, M., Iga, S., Tomita, H., Tsushima, Y., Noda, A.T., 2012]]: Response of upper clouds due to global warming tested by a global atmospheric model with explicit cloud processes. J. Clim., 25, 2178-2191. * [[http://www.springerlink.com/content/9256820kjx800015/fulltext.pdf|Dirmeyer, P. A., Cash, B. A.,Kinter III, J. L., Jung, T., Marx, L., Satoh, M., Stan, C., Tomita, H., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin, E. K., and Manganello, J., 2012]]: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Clim. Dyn., 39, 399-418, DOI10.1007/s00382-011-1127-9. * [[http://dx.doi.org/10.1007/s00382-011-1235-6|Satoh, M, Oouchi, K,Nasuno, T, Taniguchi, H, Yamada, Y, Tomita, H, Kodama, C, Kinter III, J, Achuthavarier, D., Manganello, J., Cash, B., Jung, T., Palmer, T., Wedi, N., 2012]]: The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models, Clim. Dyn., 39.2185-2206, DOI 10.1007/s00382-011-1235-6. * Oouchi, K., and H. Fudeyasu, 2012: Cyclones: Formation, Triggers, and Control. Nova Science Publishers, ISBN:978-1-61942-976-5. * [[http://dx.doi.org/10.1155/2011/872857|Dim, J. R., T. Y. Nakajima, T. Takamura, and N. Kikuchi, 2012]]: Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation. Advances in Meteorology, 2011, https://doi.org/10.1155/2011/872857. /*LABEL:PRE*/ /*LABEL:EVAL*/ ===== 2011 ===== * [[https://doi.org/10.1175/2010JAMC2515.1|Katsumata, M., P.E. Ciesielski, and R.H. Johnson, 2011]]: Evaluation of Budget Analyses during MISMO. J. Appl. Meteor. Climatol., 50, 241-254. https://doi.org/10.1175/2010JAMC2515.1 * Oouchi, K. 2011: Tropical cyclone (genesis, development, general characteristics, disaster and climate issues), Earth Environment - Observation and Prediction, Asakura-Syoten, (Eds. M. Yoshizaki et al.), (in Japanese), accepted. * [[http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-10-05026.1|Suzuki, K., G. L. Stephens, S. C. van den Heever, and T. Y. Nakajima, 2011]]: Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci., 68, 2655-2670. /*LABEL:PRE*/ /*LABEL:CLD*/ * Miyakawa, T., Takayabu, Y. N., Nasuno, T., Miura, H., Satoh, M., Moncrieff, M. W., 2011: Convective momentum transport by rainbands within a Madden-Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci., 69, 1317-1338. * Tsuchiya, C., Sato, K., Nasuno, T., Noda, A. T., Satoh, M., 2011: Universal frequency spectra of surface meteorological fluctuations. J. Climate, 24, 4718-4732, doi: 10.1175/2011JCLI4196.1. * Niwa,Y., Tomita,H., Satoh,M., Imasu,R., 2011: A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport. J. Meteor. Soc. Japan, 89, 255-268. * Iga, S., Tomita, H., Tsushima, Y., Satoh, M., 2011: Sensitivity of upper tropospheric ice clouds and their impacts on the Hadley circulation using a global cloud-system resolving model. J. Climate, 24, 2666-2679. doi:10.1175/2010JCLI3472.1 * [[http://www.nicam.jp/msn3605/papers/JMSJ_APE09-04_rev5.pdf|Nasuno,T and M. Satoh, 2011]]: Statistical relation between maximum vertical velocity and surface precipitation of convective clouds in a global nonhydrostatic aquaplanet experiment. J. Meteor. Soc. Japan, 89, 553-561. * [[http://www.nicam.jp/msn3605/papers/JMSJ_APE09-03_rev3.pdf|Nasuno,T and M. Satoh, 2011]]: Properties of precipitation and in-cloud vertical motion in a global nonhydrostatic aquaplanet experiment. J. Meteor. Soc. Japan, 89, 413-439. /*LABEL:PRE*/ * Fujita, M., Yoneyama, K., Mori, S., Nasuno, T., Satoh, M., 2011: Diurnal convection peaks over the eastern Indian Ocean off Sumatra during different MJO phases. J. Meteor. Soc. Japan, MAHASRI special issue, 89A, 317-330. ===== 2010 ===== * [[http://www.atmos-chem-phys.net/10/11641/2010/|Sohn, B. J., Nakajima, T., Satoh, M., and Jang, H.-S. 2010]]: Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results, Atmos. Chem. Phys., 10, 11641-11646, doi:10.5194/acp-10-11641-2010. * [[http://journals.ametsoc.org/doi/pdf/10.1175/2010MWR3474.1|H. Fudeyasu, Y. Wang, M. Satoh, T. Nasuno, H. Miura,and W. Yanase, 2010]] : Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving Model Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 4285-4304. /*LABEL:CYC*/ * [[http://journals.ametsoc.org/doi/pdf/10.1175/2010MWR3475.1|H. Fudeyasu, Y. Wang, M. Satoh, T. Nasuno, H. Miura,and W. Yanase, 2010]] : Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 137, 3254-3268. /*LABEL:CYC*/ * [[http://www.agu.org/journals/gl/gl1008/2010GL042516/|Yanase, W., Satoh, M., Yamada, H., Yasunaga,K., Moteki, Q., 2010]] : Continual influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006). Geophys. Res. Lett., 37, L08809, doi:10.1029/2010GL042516. * [[http://adv-model-earth-syst.org/index.php/JAMES/article/view/v2n9/|Emanuel, K., K. Oouchi, M. Satoh, H. Tomita and Y. Yamada, 2010]] : Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model, J. Adv. Model. Earth Syst., Vol. 2, Art. #9, 9 pp., doi:10.3894/JAMES.2010.2.9. /*LABEL:CYC*/ * [[http://www.jpgu.org/publication/jgl/JGL-Vol6-3.pdf|Satoh, M., 2010]] : Climate Study Using a Global Cloud-resolving Model. Journal of Geography, 119(3), 1-3. (in Japanese) * [[http://www.nagare.or.jp/publication/nagare.html|Tanaka, H.L., Boku, T., Satoh, M., 2010]] : Historical progress of the dynamical core of the general circulation model of the atmosphere. Nagare, 29, 27-32. (in Japanese) * [[http://www.jstage.jst.go.jp/article/jmsj/88/3/88_571/_article|Taniguchi, H., W. Yanase, M. Satoh, 2010]]: Ensemble simulation of cyclone Nargis by a Global Cloud-system-resolving Model -- modulation of cyclogenesis by the Madden-Julian Oscillation. J. Meteor. Soc. Japan, 88, 571-591. /*LABEL:MJO*/ /*LABEL:CYC*/ /*LABEL:MON*/ * [[http://www.jstage.jst.go.jp/article/jmsj/88/3/88_497/_article|Yanase, W., H. Taniguchi, M. Satoh, 2010]]: The genesis of tropical cyclone Nargis (2008): Environmental modulation and numerical predictability. J. Meteor. Soc. Japan, 88, 497-519. /*LABEL:CYC*/ /*LABEL:EVAL*/ * [[http://europa.agu.org/?view=article&uri=/journals/jd/jd1008/2009JD012686/2009JD012686.xml&t=Kubokawa|Kubokawa, H., Fujiwara, M., Nasuno, T., Satoh, M., 2010]]: Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): Aqua planet experiments. J. Geophys. Res., 115, D08102, doi:10.1029/2009JD012686. * [[http://europa.agu.org/?view=article&uri=/journals/jd/jd1009/2009JD012585/2009JD012585.xml&t=M.Satoh|Sherwood, S. C., Ingram, W., Tsushima,Y., Satoh,M., Roberts,M., 2010]]: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585. * [[http://europa.agu.org/?view=article&uri=/journals/jd/jd1004/2009JD012247/2009JD012247.xml&t=M.Satoh|Satoh, M., Inoue, T., and Miura, H., 2010]]: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators, J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247. /*LABEL:EVAL*/ * [[http://europa.agu.org/?view=article&uri=/journals/jd/jd1010/2009JD012371/2009JD012371.xml&t=jd,2010,Inoue|Inoue, T., Satoh, M., Hagihara, Y., Miura, H., and Schmetz, J., 2010]]: Comparison of high‐level clouds represented in a global cloud system-resolving model with CALIPSO/CloudSat and geostationary satellite observations, J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371. /*LABEL:CLD*/ /*LABEL:EVAL*/ * Oouchi, K., M. Satoh, Y. Yamada, and H. Tomita, 2010: Change of tropical cyclone and season-long climate state in a global warming experiment with a global cloud-system resolving model. Hurricanes and Climate Change,2nd ed., Springer. (in press) * [[http://dx.doi.org/10.1016/j.atmosres.2009.05.007|Noda, A. T., K. Oouchi, M Satoh, H. Tomita, S. Iga, and Y. Tsushima, 2010]]: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96(2-3), 208-217, doi:10.1016/j.atmosres.2009.05.007. /*LABEL:PRE*/ /*LABEL:CLD*/ /*LABEL:EVAL*/ * [[http://europa.agu.org/?view=article&uri=/journals/gl/gl1007/2010GL042518/2010GL042518.xml&t=gl,2010,Yamada|Yamada, Y., K. Oouchi, M. Satoh, H. Tomita and W. Yanase, 2010]]: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: global cloud-system-resolving approach. Geophys. Res. Lett., 37, L07709, doi:10.1029/2010GL042518. /*LABEL:CYC*/ * ▲ Featured in "Research Highlights" in Nature, Apr 22 (2010) doi:10.1038/4641107c, Climate change: “Fewer, taller, fiercer”, Nature, 464, 1107. ===== 2009 ===== * [[http://www.jstage.jst.go.jp/article/jar/24/4/24_250/_article|Suzuki, K., 2009]]: A study of aerosol indirect effect with a global cloud-resolving model. Earozoru Kenkyu, 24, 250-255 (in Japanese). * [[http://www.springerlink.com/content/3h7187wm18162j18/fulltext.pdf|Watanabe, M., S. Emori, M. Satoh, H. Miura, 2009]]: A PDF-based hybrid prognostic cloud scheme for general circulation models.Clim. Dyn., 33, 795-816, doi:10.1007/s00382-008-0489-0. * [[http://www.jstage.jst.go.jp/article/sola/5/0/5_180/_article|Terasaki, K., H. L. Tanaka, Satoh, M., 2009]]: Characteristics of the Kinetic Energy Spectrum of NICAM model atmosphere. SOLA, 5, 180-183, doi:10.2151/sola.2009.046. * [[http://www.jstage.jst.go.jp/article/sola/5/0/5_121/_article|Kondo, K., Tanaka, H. L., 2009]]: Applying the local ensemble transform Kalman filter to the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). SOLA, 2009, Vol. 5, 121-124, doi:10.2151/sola.2009-031. * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2008JHM1080.1|Tomita, H. (2009)]]: Analysis of Spurious Surface Temperature at the Atmosphere-Land Interface and a New Method to Solve the Surface Energy Balance Equation. J. Hydorometeor. 10. 833-844. /*LABEL:MF*/ * [[http://www.agu.org/journals/gl/gl0913/2009GL039056/|Miura, H., M. Satoh, T., and M. Katsumata, 2009]]: Spontaneous onset of a Madden-Julian oscillation event in a cloud-system-resolving simulation. Geophys. Res. Lett., 36, L13802, doi:10.1029/2009GL039056. /*LABEL:MJO*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2009JCLI2890.1|Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, Y. Wang, 2009]]: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model, J. Climate, 22, 4809-4826; DOI:10.1175/2009JCLI2890.1. /*LABEL:PRE*/ * [[http://www.jstage.jst.go.jp/article/sola/5/0/5_65/_article/-char/ja/|Oouchi, K., A.T. Noda, M. Satoh, H. Miura, H. Tomita. T. Nasuno, S. Iga (2009)]]: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian Oscillation event in a global cloud-system-resolving model. SOLA, Vol. 5, 065-068, doi:10.2151/sola.2009-017. /*LABEL:MJO*/ /*LABEL:CYC*/ * [[http://www.agu.org/journals/gl/gl0911/2009GL038271/|Oouchi, K.,A. T. Noda, M. Satoh, B. Wang, S.-P. Xie, H.G. Takahashi, T. Yasunari (2009)]]: Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability. Geophys. Res. Lett.,36, L11815, doi:10.1029/2009GL038271. /*LABEL:MON*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2009MWR2965.1|Liu, P., M. Satoh, B. Wang, H. Fudeyasu, T. Nasuno, T. Li, H. Miura, H. Taniguchi, H. Masunaga, X. Fu, and H. Annamalai, 2009]]: A MJO Simulated by the NICAM at 14-km and 7-km Resolutions. Mon. Wea. Rev., 137, 3254-3268, DOI: 10.1175/2009MWR2965.1. /*LABEL:MJO*/ * Collins, W. D., Satoh, M. 2009: Simulating Global Clouds, Past, Present, and Future. Chap 20 of "Heintzenberg, J., and R. J. Charlson, eds. 2009. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation." Struengmann Forum Report, vol. 2. Cambridge, MA: The MIT Press, pp.469-486. /*LABEL:CLD*/ /*LABEL:CLIM*/ * Quaas, J. S. Bony, W. D. Collins, L. Donner, A. Illingworth, A. Jones, U. Lohmann, M. Satoh, S. E. Schwartz,W.-K. Tao, and R. Wood, 2009: Current understanding and quantification of clouds in the changing climate system and strategies for reducing critical uncertainties. Chap 24 of "Heintzenberg, J., and R. J. Charlson, eds. 2009. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation." Struengmann Forum Report, vol. 2. Cambridge, MA: The MIT Press, pp.557-573. /*LABEL:CLD*/ /*LABEL:CLIM*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2009JAS2948.1|Satoh, M., Matsuda, Y. (2009)]] : Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments. J. Atmos. Sci., 66, 2659-2677. /*LABEL:CLD*/ * [[http://www.nicam.jp/msn3605/papers/Nasuno_etal_2009_JMSJ_Note.pdf|Nasuno,T., H. Miura, H., M. Satoh, A. T. Noda, and K. Oouchi, 2009]]: Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. J. Meteor. Soc. Japan, 87, 335-345. (C) Copyright 2009, Meteorological Society of Japan (MSJ). Permission has been provided by MSJ to place a copy of the articles on this server. MSJ will not guarantee that the copy provided here is an accurate one published in the Journal. /*LABEL:MJO*/ * [[http://dx.doi.org/10.1016/j.atmosres.2008.12.010|Suzuki, K., and G. L. Stephens (2009)]]: Relationship between radar reflectivity and the time scale of warm rain formation in a global cloud-resolving model. Atmos. Res., doi:10.1016/j.atmosres.2008.12.010. /*LABEL:PRE*/ ===== 2008 ===== * [[http://dx.doi.org/10.1029/2007GB003081|Patra PK, Law RM, Peters W, R?denbeck C, Takigawa M, Aulagnier C, Baker I, Bergmann DJ, Bousquet P, Brandt J, Bruhwiler L, Cameron-Smith PJ, Christensen JH, Delage F, Denning AS, Fan S, Geels C, Houweling S, Imasu R, Karstens U, Kawa SR, Kleist J, Krol MC, Lin SJ, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Vautard R, Vermeulen AT, Zhu Z, 2008]] TransCom model simulations of hourly atmospheric CO2: analysis of synoptic scale variations for the period 2002-2003. Global Biogeochem Cycles, 22, GB4013. doi:10.1029/2007GB003081 * [[http://dx.doi.org/10.1029/2007GB003050|Law RM, Peters W, R?denbeck C, Aulagnier C, Baker I, Bergmann DJ, Bousquet P, Brandt J, Bruhwiler L, Cameron-Smith PJ, Christensen JH, Delage F, Denning AS, Fan S, Geels C, Houweling S, Imasu R, Karstens U, Kawa SR, Kleist J, Krol MC, Lin SJ, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Patra PK, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Takigawa M, Vautard R, Vermeulen AT, Zhu Z, 2008]] TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Global Biogeochem Cycles 22:GB3009. doi:10.1029/2007GB003050 * [[http://siamdl.aip.org/vsearch/servlet/VerityServlet?KEY=SJOCE3&smode=strresults&sort=chron&maxdisp=25&threshold=0&pjournals=SJOCE3&possible1zone=article&possible4=Tomita&possible4zone=author&bool4=and&OUTLOG=NO&viewabs=SJOCE3&key=DISPLAY&docID=1&page=1&chapter=0|Tomita, H., K. Goto, M. Satoh, 2008]]: A new approach of atmospheric general circulation model - Global cloud resolving model NICAM and its computational performance -. SIAM, J. Sci. Comput., 30, 2755-2776; DOI. 10.1137/070692273. /*LABEL:MF*/ * [[http://europa.agu.org/?view=article&uri=/journals/gl/gl0822/2008GL036003/2008GL036003.xml&t=gl,2008,Fudeyasu|Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2008]]: The global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys. Res. Lett., 35, L22808, doi:10.1029/2008GL0360033. /*LABEL:CYC*/ * [[http://www.agu.org/pubs/crossref/2008/2008GL035449.shtml|Suzuki, K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T. Y. Nakajima, and G. L. Stephens (2008)]]: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett., 35, L19817, doi:10.1029/2008GL035449. /*LABEL:PRE*/ /*LABEL:CLD*/ /*LABEL:CLIM*/ /*LABEL:AERO*/ * [[http://precip.hyarc.nagoya-u.ac.jp/~masunaga/reprint/Masunaga_etal_JGR08pp.pdf|Masunaga, H., Satoh, M., Miura, H. (2008)]] : A Joint Satellite and Global Cloud-Resolving Model Analysis of a Madden-Julian Oscillation event: Model Diagnosis. J. Geophys. Res.,113, D17210, doi:10.1029/2008JD009986. /*LABEL:MJO*/ * [[http://dx.doi.org/10.2151/jmsj.86A.107|Tomita, H. (2008a)]] : A stretched grid on a sphere by new grid transformation. J. Meteor. Soc. Japan, 86A, 107-119. /*LABEL:MF*/ * [[http://dx.doi.org/10.2151/jmsj.86A.121|Tomita, H. (2008b)]] : New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121-142. /*LABEL:MF*/ /*LABEL:NSW*/ /*LABEL:CLD*/ * [[http://www.jstage.jst.go.jp/article/jmsj/86A/0/17/_pdf/-char/ja/|Sato, T., T. Yoshikane, M. Satoh, H. Miura, and H. Fujinami (2008)]] : Resolution dependency of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model. J. Meteor. Soc. Japan, 86A, 17-31. /*LABEL:CLD*/ * [[http://www.jstage.jst.go.jp/article/jmsj/86A/0/1/_pdf/-char/ja/|Inoue,T., M. Satoh, H. Miura, B. Mapes (2008)]] : Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86A, 1-15. /*LABEL:CLD*/ * [[http://www.fujipress.jp/finder/xslt.php?mode=present&inputfile=DSSTR000300010004.xml|Satoh, M. (2008)]] : Numerical simulations of heavy rainfalls by a global cloud-resolving model. J. Disaster Research, 3, 33-38. /*LABEL:MJO*/ /*LABEL:CLD*/ * [[http://dx.doi.org/10.1016/j.jcp.2007.02.006|Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, S. Iga, (2008)]] : Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. Journal of Computational Physics, the special issue on Predicting Weather, Climate and Extreme events, 227, 3486-3514, doi:10.1016/j.jcp.2007.02.006. /*LABEL:MF*/ * [[http://www.ccsr.u-tokyo.ac.jp/%7Esatoh/paper/2008.Satoh.Springer/Satoh2008Springer.pdf|Satoh, M., T. Nasuno, H. Miura, H. Tomita, S. Iga, Y. Takayabu (2008)]] : Precipitation statistics comparison between global cloud resolving simulation with NICAM and TRMM PR data. High Resolution Numerical Modelling of the Atmosphere and Ocean, edited by Wataru Ohfuchi and Kevin Hamilton, 99-112, ISBN-13: 978-0387366715, 293pp. /*LABEL:PRE*/ * [[http://dx.doi.org/10.2151/jmsj.86A.175|Mapes, B., S. Tulich, T. Nasuno, and M. Satoh, 2008]]: Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteor. Soc. Japan, 86A, 175-185. /*LABEL:APE*/ * [[http://dx.doi.org/10.2151/jmsj.86A.219|Nasuno, T., 2008]]: Equatorial mean zonal wind in a global nonhydrostatic aquaplanet experiment. J. Meteor. Soc. Japan, 86A, 219-236. (C) Copyright 2008, Meteorological Society of Japan (MSJ). Permission has been provided by MSJ to place a copy of the articles on this server. MSJ will not guarantee that the copy provided here is an accurate one published in the Journal. /*LABEL:APE*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2007JAS2395.1|Nasuno,T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2008 ]]: Convectively coupled equatorial waves simulated on an aquaplanet in a global nonhydrostatic experiment. J. Atmos. Sci., 65, 1246-1265. ===== 2007 ===== * [[http://www.sciencemag.org/cgi/content/abstract/318/5857/1763|Miura,H., Satoh, M., Nasuno, T., Noda, A.T., Oouchi, K. (2007)]]: A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 1763-1765. /*LABEL:MJO*/ * Miura,H. (2007) An upwind-baiased conservative advection scheme for spherical hexagonal-pentagonal grids. Mon. Wea. Rev., 135, 4038-4044. * [[http://www.agu.org/pubs/crossref/2007/2007GL031048.shtml|Iga, S., H. Tomita, Y. Tsushima, M. Satoh (2007)]] : Climatology of a nonhydrostatic global model with explicit cloud processes. Geophys. Res. Lett., 34, L22814, doi:10.1029/2007GL031048. /*LABEL:CLIM*/ * [[http://www.metsoc.jp/tenki/pdf/2007/2007_09_0009.pdf|Satoh, M. (2007)]] : A road to a global nonhydostatic model. Tenki, 54.9 769-772. /*LABEL:MF*/ * [[http://www.agu.org/pubs/crossref/2007/2007GL030782.shtml|Sato, T., Miura, H., Satoh, M. (2007)]] : Spring diurnal cycle of clouds over Tibetan Plateau: global cloud-resolving simulations and satellite observations. Geophys. Res. Lett., 34, L18816, doi:10.1029/2007GL030782 /*LABEL:CLD*/ * [[http://www.agu.org/pubs/crossref/2007/2006GL027448.shtml|Miura, H., Masaki Satoh, Hirofumi Tomita, Tomoe Nasuno, Shin-ichi Iga, and Akira T. Noda (2007)]] : A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophys. Res. Lett., 34, L02804, doi:10.1029/2006GL027448 /*LABEL:CYC*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2FJAS3948.1|Nasuno, T., Tomita, H., Iga, S., Miura, H., Satoh, M., 2007]] : Multi-scale organization of convection simulated with explicit cloud processes on an aquaplanet. J. Atmos. Sci., 64, 1902-1921. /*LABEL:APE*/ * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2FMWR3423.1|Iga, S., Tomita, H., Satoh, M., Goto, K. (2007)]] : Mountain-wave-like spurious waves due to inconsistency of horizontal and vertical resolution associated with cold fronts. Mon. Wea. Rev., 135, 2629-2641. /*LABEL:MF*/ ===== 2006 ===== * Satoh, M.(2006) : Climate research on a next generation global cloud-resolving model. Parity, 21, 56-57. (in Japanese) /*LABEL:MF*/ * Tomita, H., 2006: Development of nonhydrostatic atmospheric general circulation model using an icosahedral grid. (in japanese) Nagare, 25, 181-186. /*LABEL:MF*/ ===== 2005 ===== * [[http://www.agu.org/pubs/crossref/2005/2005GL023672.shtml|Miura, H., Tomita,H., Nasuno,T., Iga, S., Satoh,M., and Matsuno, T. (2005)]] : A climate sensitiviy test using a global cloud resolving model under an aqua planet condition. Geophys. Res. Lett., 32, L19717, doi:1029/2005GL023672. /*LABEL:APE*/ * [[http://www.jamstec.go.jp/esc/publication/journal/jes_vol.3/pdf/JES3-22Tomita.pdf|Satoh, M., Tomita, H, Miura, H., Iga, S., and Nasuno, T. (2005)]] : Development of a global cloud resolving model -- a multi-scale structure of tropical convections --. J. Earth Simulator, vol.3, 11-19. /*LABEL:MF*/ * [[http://www.agu.org/pubs/crossref/2005/2005GL022459.shtml|Tomita, H, Miura, H., Iga, S., Nasuno, T., and Satoh,M. (2005)]] : A global cloud-resolving simulation: preliminary results from an aqua planet experiment. Geophys. Res. Lett., vol.32, L08805, doi:10.1029/2005GL022459. /*LABEL:APE*/ ===== 2004 ===== * [[http://dx.doi.org/10.1016/j.fluiddyn.2004.03.003|Tomita, H. and Satoh, M. (2004)]] : A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357-400. DOI:10.1016/j.fluiddyn.2004.03.003 /*LABEL:MF*/ ===== 2003 ===== * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F1520-0493%282003%29131%3C1033%3ACSFACN%3E2.0.CO%3B2|Satoh, M. (2003)]] : Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131, 1033-1050 /*LABEL:MF*/ * [[http://dx.doi.org/10.1175/1520-0493(2003)131<0974:AASSFR>2.0.CO;2|Xiao,F., Okazaki,T., Satoh,M.(2003)]] An accurate semi-Lagrangian scheme for rain drop sedimentation. Mon. Wea. Rev., 131, 974-983, http://dx.doi.org/10.1175/1520-0493(2003)131<0974:AASSFR>2.0.CO;2 * Tomita,H., Satoh,M., Goto, K.(2003) Development of a nonhydrostatic general circulation model using an icosahedral grid. Parallel computational fluid dynamics, Eds. Matsuno, K., Ecer, A., Periaux, J., Satofuka, N., Fox, P., Elsevier Science, 115-123. * Goto, K., Tomita,H., Satoh,M.(2003) Computational performance of the dynamical part of the next generation climeta model using an icosahedral grid on the Earth Simulator. Parallel computational fluid dynamics, Eds. Matsuno, K., Ecer, A., Periaux, J., Satofuka, N., Fox, P., Elsevier Science, 63-69. ===== 2002 ===== * [[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-47K6R4K-C&_user=1045025&_coverDate=11%2F20%2F2002&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236863%232002%23998169998%23373700%23FLP%23display%23Volume)&_cdi=6863&_sort=d&_docanchor=&_ct=12&_acct=C000050859&_version=1&_urlVersion=0&_userid=1045025&md5=7803c40e244d53a539ab71179e4efacb|Tomita, H., Satoh, M., Goto, K.(2002)]] : An optimization of the icosahedral grid modified by spring dynamics. J. Comp. Phys., 183, 307-331 * [[http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F1520-0493%282002%29130%3C1227%3ACSFTCN%3E2.0.CO%3B2|Satoh, M. (2002)]] : Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130, 1227-1245 /*LABEL:MF*/ * Satoh,M., Tomita,M., Tsugawa,M. (2002) : Development of a global nonhydrostatic model. Gekkan Kaiyo, 34, 101-106 (in Japanese) /*LABEL:MF*/ ===== 2001 ===== * [[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-45BC22M-5&_user=1045025&_coverDate=12%2F10%2F2001&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236863%232001%23998259997%23289458%23FLP%23display%23Volume)&_cdi=6863&_sort=d&_docanchor=&_ct=20&_acct=C000050859&_version=1&_urlVersion=0&_userid=1045025&md5=ae5886b2d285b53a5d9633cef64efc1a|Tomita,H., Tsugawa,M., Satoh,M., Goto, K.(2001)]] : Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comp. Phys., 174, 579-613 /*LABEL:MF*/ * [[http://www.nagare.or.jp/nagare/20-1/4.pdf|Satoh, M., Tomita, H., Tsugawa, M., Xiao, F. (2001)]] Development of a next generation atmospheric general circulation model at Frontier Research System for Global Change. (in japanese) Nagare, 20, 37-46 /*LABEL:MF*/