public:publications:year

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
public:publications:year [2024/09/01 09:31] satohpublic:publications:year [2025/02/05 08:37] (current) satoh
Line 6: Line 6:
 See also [[https://nicam.sakura.ne.jp/theme_auto.php|publication list by theme]]. See also [[https://nicam.sakura.ne.jp/theme_auto.php|publication list by theme]].
  
 +===== 2025 =====
 +  * [[https://doi.org/10.1016/B978-0-443-15638-0.00003-4|Nasuno, T., Kikuchi, K., and Nakano, M., 2025]]: Boreal summer intraseasonal oscillation. Chapter 3, Atmospheric Oscillations - Sources of Subseasonal-to-Seasonal Variability and Predictability, Elsevier, 33-68. https://doi.org/10.1016/B978-0-443-15638-0.00003-4
 ===== 2024 ===== ===== 2024 =====
-*[[https://doi.org/10.1029/2023MS004046]] Goto, D., Nishizawa, T., Uchida, J., Yumimoto, K., Jin, Y., Higurashi, A., et al. (2024+  * [[https://doi.org/10.1186/s40645-024-00668-1|Takasuka, D., Satoh, M., Miyakawa, T., Kodama, C., Klocke, D., Stevens, B., Vidale, P. L., and Terai, C. R., 2024]]: A protocol and analysis of year-long simulations of global storm-resolving models and beyond. Progress in Earth and Planetary Science, 11, 66, https://doi.org/10.1186/s40645-024-00668-1  
-Development of an aerosol assimilation system using a global non‐hydrostatic model, a 2‐dimensional variational method, and multiple satellite‐based aerosol products. Journal of Advances in Modeling Earth Systems, 16, e2023MS004046. https://doi.org/10.1029/2023MS004046+  * [[https://doi.org/10.1175/JAS-D-23-0208.1|Seiki, T., and Nagao, T. M., 2024]]: Evaluation of the aggregation efficiency modeling at colder atmospheric temperatures in comparison to satellite observations. Journal of the Atmospheric Sciences, 81, 1689-1710. https://doi.org/10.1175/JAS-D-23-0208.1 
 +  * [[https://doi.org/10.1007/s00382-024-07441-6|Noda, A.T., Hirota, N., Koshiro, T., and Kawai, H., 2024]]: Robustness of the relationship between tropical high-cloud cover and large-scale circulations. Clim Dyn 62, 10153–10165. https://doi.org/10.1007/s00382-024-07441-6 
 +  * [[https://doi.org/10.1029/2023GL106837|Takano, Y. H, Kodama, C., and H. Miura, 2024]]: Diagnostic method for atmosphere-ocean coupling over tropical oceans at the sub-seasonal timescale, Geophysical Research Letters, 51, 8, e2023GL106837. 
 +  * [[https://doi.org/10.1029/2023MS004046|Goto, D., Nishizawa, T., Uchida, J., Yumimoto, K., Jin, Y., Higurashi, A., et al.2024]] Development of an aerosol assimilation system using a global non‐hydrostatic model, a 2‐dimensional variational method, and multiple satellite‐based aerosol products. Journal of Advances in Modeling Earth Systems, 16, e2023MS004046. https://doi.org/10.1029/2023MS004046
   * [[https://doi.org/10.1029/2023MS003701|Takasuka, D., Kodama, C., Suematsu, T., Ohno, T., Yamada, Y., Seiki, T., et al., 2024]] How can we improve the seamless representation of climatological statistics and weather toward reliable global K-scale climate simulations? Journal of Advances in Modeling Earth Systems, 16, e2023MS003701. https://doi.org/10.1029/2023MS003701    * [[https://doi.org/10.1029/2023MS003701|Takasuka, D., Kodama, C., Suematsu, T., Ohno, T., Yamada, Y., Seiki, T., et al., 2024]] How can we improve the seamless representation of climatological statistics and weather toward reliable global K-scale climate simulations? Journal of Advances in Modeling Earth Systems, 16, e2023MS003701. https://doi.org/10.1029/2023MS003701 
   * [[http://doi.org/10.2151/sola.2024-009|Kasami, K., Satoh, M., 2024]] Mechanism of secondary eyewall formation in tropical cyclones revealed by sensitivity experiments on the mesoscale descending inflow. SOLA, 20, doi:10.2151/sola.2024-009, accepted (2024/01/30).   * [[http://doi.org/10.2151/sola.2024-009|Kasami, K., Satoh, M., 2024]] Mechanism of secondary eyewall formation in tropical cyclones revealed by sensitivity experiments on the mesoscale descending inflow. SOLA, 20, doi:10.2151/sola.2024-009, accepted (2024/01/30).
  
 ===== 2023 ===== ===== 2023 =====
-  * [[https://doi.org/10.5194/egusphere-2023-1997|Roh, W., Satoh, M., Hagihara, Y., Horie, H., Ohno, Y. and Kubuta, T., 2023]] An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite. Atmos. Meas. Tech. Discussion, submitted. https://doi.org/10.5194/egusphere-2023-1997+  * [[https://doi.org/10.1016/j.ocemod.2022.102153|Tatsuo Suzuki, Masuo Nakano, Shingo Watanabe, Hiroaki Tatebe, Yuki Takano, 2023]]: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption. Ocean Modelling, 181, 102153. https://doi.org/10.1016/j.ocemod.2022.102153 (Received 22 August 2022, Revised 17 October 2022, Accepted 24 November 2022, Available online 2 December 2022). 
 +  * [[https://doi.org/10.5194/egusphere-2023-1997|Roh, W., Satoh, M., Hagihara, Y., Horie, H., Ohno, Y. and Kubuta, T., 2023]]An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite. Atmos. Meas. Tech. Discussion, submitted. https://doi.org/10.5194/egusphere-2023-1997
   * [[https://doi.org/10.1186/s40645-023-00583-x|Noda, A. T., Ohno, T., Kodama, C., Chen, Y.-W., Kuba, N., Seiki, T., Yamada, Y., and Satoh, M., 2023]]: Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warming. Prog. Earth Planet. Sci., 10, 48, https://doi.org/10.1186/s40645-023-00583-x (Published: 18 August 2023)   * [[https://doi.org/10.1186/s40645-023-00583-x|Noda, A. T., Ohno, T., Kodama, C., Chen, Y.-W., Kuba, N., Seiki, T., Yamada, Y., and Satoh, M., 2023]]: Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warming. Prog. Earth Planet. Sci., 10, 48, https://doi.org/10.1186/s40645-023-00583-x (Published: 18 August 2023)
   * [[https://doi.org/10.1029/2023GL104210|Wu, X., Fu, Q., & Kodama, C., 2023]]: Response of Tropical Overshooting Deep Convection to Global Warming Based on Global Cloud-Resolving Model Simulations. Geophysical Research Letters, 50(14), e2023GL104210. https://doi.org/10.1029/2023GL104210   * [[https://doi.org/10.1029/2023GL104210|Wu, X., Fu, Q., & Kodama, C., 2023]]: Response of Tropical Overshooting Deep Convection to Global Warming Based on Global Cloud-Resolving Model Simulations. Geophysical Research Letters, 50(14), e2023GL104210. https://doi.org/10.1029/2023GL104210
   * [[https://doi.org/10.5194/amt-16-3331-2023|Roh, W., Satoh, M., Hashino, T., Matsugishi, S., Nasuno, T., Kubota, T., 2023]]: Introduction to EarthCARE synthetic data using a global storm-resolving simulation. Atmos. Meas. Tech.,  https://doi.org/10.5194/amt-16-3331-2023 (accepted 2023/05/23; online published 2023/06/30).    * [[https://doi.org/10.5194/amt-16-3331-2023|Roh, W., Satoh, M., Hashino, T., Matsugishi, S., Nasuno, T., Kubota, T., 2023]]: Introduction to EarthCARE synthetic data using a global storm-resolving simulation. Atmos. Meas. Tech.,  https://doi.org/10.5194/amt-16-3331-2023 (accepted 2023/05/23; online published 2023/06/30). 
   * [[https://doi.org/10.5194/amt-16-3211-2023|Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M. and Kubota, T., 2023]]: Global evaluation of Doppler velocity errors of EarthCARE Cloud Profiling Radar using global storm-resolving simulation. Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-16-3211-2023 (accepted 2023/05/23; online published 2023/06/28).    * [[https://doi.org/10.5194/amt-16-3211-2023|Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M. and Kubota, T., 2023]]: Global evaluation of Doppler velocity errors of EarthCARE Cloud Profiling Radar using global storm-resolving simulation. Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-16-3211-2023 (accepted 2023/05/23; online published 2023/06/28). 
 +  * [[https://doi.org/10.1016/j.dib.2023.109135 |Matsuoka, D., Kodama, C., Yamada, Y., and Nakano, M., 2023]]: Tropical cyclone dataset for a high-resolution global nonhydrostatic atmospheric simulation. Data in Brief, 48, 109135. https://doi.org/10.1016/j.dib.2023.109135
   * [[https://doi.org/10.1007/s00382-022-06657-8|Rehbein, A., Ambrizzi, T., 2023]]: Mesoscale convective systems over the Amazon basin in a changing climate under global warming. Clim. Dyn. https://doi.org/10.1007/s00382-022-06657-8   * [[https://doi.org/10.1007/s00382-022-06657-8|Rehbein, A., Ambrizzi, T., 2023]]: Mesoscale convective systems over the Amazon basin in a changing climate under global warming. Clim. Dyn. https://doi.org/10.1007/s00382-022-06657-8
   * [[https://doi.org/10.1029/2022GL102603|Feng, Z., Leung, L. R., Hardin, J.,Terai, C. R., Song, F., and Caldwell, P., 2023]]: Mesoscale convective systems in DYAMOND global convection-permitting simulations. Geophys. Res. Lett., 50, e2022GL102603. https://doi.org/10.1029/2022GL102603   * [[https://doi.org/10.1029/2022GL102603|Feng, Z., Leung, L. R., Hardin, J.,Terai, C. R., Song, F., and Caldwell, P., 2023]]: Mesoscale convective systems in DYAMOND global convection-permitting simulations. Geophys. Res. Lett., 50, e2022GL102603. https://doi.org/10.1029/2022GL102603
Line 26: Line 33:
   * [[https://doi.org/10.5194/amt-16-603-2023|Wang, M., Nakajima, T. Y., Roh, W., Satoh, M., Suzuki, K., Kubota, T., and Yoshida, M., 2023]]: Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product. Atmospheric Measurement Techniques, 16, 603–623, https://doi.org/10.5194/amt-16-603-2023 (accept 2023/01/31)    * [[https://doi.org/10.5194/amt-16-603-2023|Wang, M., Nakajima, T. Y., Roh, W., Satoh, M., Suzuki, K., Kubota, T., and Yoshida, M., 2023]]: Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product. Atmospheric Measurement Techniques, 16, 603–623, https://doi.org/10.5194/amt-16-603-2023 (accept 2023/01/31) 
   * [[https://doi.org/10.1016/j.ocemod.2022.102153|Tatsuo Suzuki, Masuo Nakano, Shingo Watanabe, Hiroaki Tatebe, Yuki Takano, 2023]]: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption. Ocean Modelling, 181, 102153, https://doi.org/10.1016/j.ocemod.2022.102153. (Accepted 24 November 2022, Available online 2 December 2022)   * [[https://doi.org/10.1016/j.ocemod.2022.102153|Tatsuo Suzuki, Masuo Nakano, Shingo Watanabe, Hiroaki Tatebe, Yuki Takano, 2023]]: Mechanism of a meteorological tsunami reaching the Japanese coast caused by Lamb and Pekeris waves generated by the 2022 Tonga eruption. Ocean Modelling, 181, 102153, https://doi.org/10.1016/j.ocemod.2022.102153. (Accepted 24 November 2022, Available online 2 December 2022)
-  * [[https://doi.org/10.2151/sola.19A-001|Satoh, M., Hosotani, K., 2023]]: Characteristics analysis of the senjo-kousuitai conditions in the Kyushu region in early July: The case of the July 2020 heavy rainfall event. SOLA, 19A, 1-5(TBD), accepted (2022/12/13), doi:10.2151/sola.19A-001. Preprint available at Jxiv https://doi.org/10.51094/jxiv.184+  * [[https://doi.org/10.2151/sola.19A-001|Satoh, M., Hosotani, K., 2023]]: Characteristics analysis of the senjo-kousuitai conditions in the Kyushu region in early July: The case of the July 2020 heavy rainfall event. SOLA, 19A, 1-(accepted 2022/12/13), https://doi.org/10.2151/sola.19A-001
  
 ===== 2022 ===== ===== 2022 =====
  • public/publications/year.1725150664.txt.gz
  • Last modified: 2024/09/01 09:31
  • by satoh